1. Helena Williams, Laura Cattani, Tom Vercauteren et al., "ASMUS@MICCAI - Automatic Tomographic Ultrasound Imaging Sequence Extraction of the Anal Sphincter.", Simplifying Medical Ultrasound , pg. 35, (2021); doi:10.1007/978-3-030-87583-1_4
|
2. Helena Williams, Laura Cattani, Dominique Van Schoubroeck et al., "Automatic Extraction of Hiatal Dimensions in 3-D Transperineal Pelvic Ultrasound Recordings.", Ultrasound in medicine & biology 47(12), pg. 3470, (2021); doi:10.1016/j.ultrasmedbio.2021.08.009
|
3. Helena Williams, João Pedrosa, Laura Cattani et al., "MICCAI (1) - Interactive Segmentation via Deep Learning and B-Spline Explicit Active Surfaces", Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 , pg. 315, (2021); doi:10.1007/978-3-030-87193-2_30
|
4. Ester Bonmati, Yipeng Hu, Alexander Grimwood et al., "Voice-assisted Image Labelling for Endoscopic Ultrasound Classification using Neural Networks.", arXiv: Computer Vision and Pattern Recognition , pg. , (2021); doi:
|
5. Zeping Huang, Enze Qu, Yishuang Meng et al., "Deep learning-based pelvic levator hiatus segmentation from ultrasound images.", European journal of radiology open 9, pg. 100412, (2022); doi:10.1016/j.ejro.2022.100412
|
6. Francis Jesmar P. Montalbo, "Diagnosing gastrointestinal diseases from endoscopy images through a multi-fused CNN with auxiliary layers, alpha dropouts, and a fusion residual block", Biomedical Signal Processing and Control 76, pg. 103683, (2022); doi:10.1016/j.bspc.2022.103683
|
7. Kriti, Jitendra Virmani, Ravinder Agarwal, "A Review of Segmentation Algorithms Applied to B-Mode Breast Ultrasound Images: A Characterization Approach", Archives of Computational Methods in Engineering 28(4), pg. 2567, (2020); doi:10.1007/s11831-020-09469-3
|
8. Anique T. M. Grob, F. van den Noort, C. H. van der Vaart et al., "Deep learning enables automatic quantitative assessment of puborectalis muscle and urogenital hiatus in plane of minimal hiatal dimensions.", Ultrasound in obstetrics & gynecology : the official journal of the International Society of Ultrasound in Obstetrics and Gynecology 54(2), pg. 270, (2019); doi:10.1002/uog.20181
|
9. Fei Feng, James A. Ashton-Miller, John O.L. DeLancey et al., "Convolutional neural network-based pelvic floor structure segmentation using magnetic resonance imaging in pelvic organ prolapse.", Medical physics 47(9), pg. 4281, (2020); doi:10.1002/mp.14377
|
10. Nooshin Ghavami, Yipeng Hu, Eli Gibson et al., "Automatic segmentation of prostate MRI using convolutional neural networks: Investigating the impact of network architecture on the accuracy of volume measurement and MRI-ultrasound registration.", Medical image analysis 58, pg. 101558, (2019); doi:10.1016/j.media.2019.101558
|
11. Helena Williams, Laura Cattani, Mohammad Yaqub et al., "ASMUS/PIPPI@MICCAI - Automatic C-Plane Detection in Pelvic Floor Transperineal Volumetric Ultrasound", Medical Ultrasound, and Preterm, Perinatal and Paediatric Image Analysis , pg. 136, (2020); doi:10.1007/978-3-030-60334-2_14
|
12. Alexander Grimwood, Helen McNair, Yipeng Hu et al., "Assisted Probe Positioning for Ultrasound Guided Radiotherapy Using Image Sequence Classification", arXiv: Computer Vision and Pattern Recognition , pg. , (2020); doi:
|
13. Frieda van den Noort, Beril Sirmacek, Cornelis H. Slump, "Recurrent U-net for automatic pelvic floor muscle segmentation on 3D ultrasound.", arXiv: Image and Video Processing , pg. , (2021); doi:
|
14. Alexander Grimwood, Helen McNair, Yipeng Hu et al., "MICCAI (3) - Assisted Probe Positioning for Ultrasound Guided Radiotherapy Using Image Sequence Classification", Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 , pg. 544, (2020); doi:10.1007/978-3-030-59716-0_52
|
15. Chi Wen Lung, Peter Ardhianto, Jen-Yung Tsai et al., "A Review of the Challenges in Deep Learning for Skeletal and Smooth Muscle Ultrasound Images", Applied Sciences 11(9), pg. 4021, (2021); doi:10.3390/app11094021
|
16. Fausto Milletari, Johann Frei, Seyed-Ahmad Ahmadi, "TOMAAT: volumetric medical image analysis as a cloud service", arXiv: Computer Vision and Pattern Recognition , pg. , (2018); doi:
|
17. Helena Williams, Laura Cattani, Wenqi Li et al., "3D Convolutional Neural Network for Segmentation of the Urethra in Volumetric Ultrasound of the Pelvic Floor", 2019 IEEE International Ultrasonics Symposium (IUS) , pg. , (2019); doi:10.1109/ultsym.2019.8925792
|
18. Ester Bonmati, Yipeng Hu, Nikhil Sindhwani et al., "Medical Imaging: Image-Guided Procedures - Technical note: automatic segmentation method of pelvic floor levator hiatus in ultrasound using a self-normalising neural network", Medical Imaging 2018: Image-Guided Procedures, Robotic Interventions, and Modeling 10576, pg. 123, (2018); doi:10.1117/12.2322403
|