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Abstract

Purpose: Neural network image reconstruction directly from measurement data is a relatively
new field of research, which until now has been limited to producing small single-slice images
(e.g., 1 × 128 × 128). We proposed a more efficient network design for positron emission
tomography called DirectPET, which is capable of reconstructing multislice image volumes
(i.e., 16 × 400 × 400) from sinograms.

Approach: Large-scale direct neural network reconstruction is accomplished by addressing the
associated memory space challenge through the introduction of a specially designed Radon
inversion layer. Using patient data, we compare the proposed method to the benchmark ordered
subsets expectation maximization (OSEM) algorithm using signal-to-noise ratio, bias, mean
absolute error, and structural similarity measures. In addition, line profiles and full-width half-
maximum measurements are provided for a sample of lesions.

Results: DirectPET is shown capable of producing images that are quantitatively and qualita-
tively similar to the OSEM target images in a fraction of the time. We also report on an experi-
ment where DirectPET is trained to map low-count raw data to normal count target images,
demonstrating the method’s ability to maintain image quality under a low-dose scenario.

Conclusion: The ability of DirectPET to quickly reconstruct high-quality, multislice image
volumes suggests potential clinical viability of the method. However, design parameters and
performance boundaries need to be fully established before adoption can be considered.
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1 Introduction

Reconstructing a medical image by approximating a solution to the so-called ill-posed inverse
problem typically falls into one of three broad categories of reconstruction methods: analytical,
iterative, and more recently, deep learning. While conventional analytical and iterative methods
are far more studied, understood, and deployed, the recent effectiveness of deep learning in a
variety of domains has raised the question whether neural networks are an effective means to
directly solve the inverse imaging problem. In this article, we explore an answer to that question
for positron emission tomography (PET) with the development of DirectPET, a deep neural
network capable of reconstructing a multislice image volume directly from Radon encoded
measurement data. We analyze the quality of DirectPET reconstructions both qualitatively and
quantitatively by comparing against the standard clinical reconstruction benchmark of ordered
subsets expectation maximization plus point spread function (OSEM + PSF).1,2 In addition,
we explore the benefits and limitations inherent in direct neural network reconstruction.
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As a precondition, it is reasonable to ask whether medical image reconstruction is an appro-
priate application for a neural network. The answer to this question is found in the understanding
that feedforward neural networks have been proven to be general approximators of continuous
functions with bounded input under the universal approximation theorem.3–5 The nature of PET
imaging makes it such a problem with the implication that a solution can be approximated by a
neural network. This leads us to believe that the study of direct neural network reconstruction is
a worthy pursuit.

We acknowledge that the notion of direct neural network reconstruction may be somewhat
controversial. The primary criticism, which the authors freely admit is reasonable, is that it fore-
goes decades of imaging physics research as well as the careful development of realistic stat-
istical models to approximate the system matrix, not to mention corrections for scatter and
randoms. Instead of utilizing these handcrafted approximations, data-driven reconstruction sol-
ves the inverse problem by directly learning a mapping between measurement data and images
from a large number of examples (targets) and in turn encodes this mapping onto millions or
billions of network parameters. The disadvantage with the method is its black box nature and the
current inability to understand and explain the reasoning behind a given set of trained parameters
for networks of any significant size or complexity.

Speaking in favor of direct neural network reconstruction, on the other hand, is distinct and
quantifiable benefits not found with conventional methods. First and foremost, we will show that
direct neural network reconstruction provides good image quality with very high computational
efficiency once training has been completed. Specifically, we show that the DirectPET network
can produce a multislice image volume comparable to OSEM + PSF in a fraction of the amount
of time needed by the model-based iterative method. Another benefit is the adaptability and
flexibility that deep learning methods provide in that the output can be tuned to exhibit specific
desirable image characteristics by providing training targets with those same characteristics.
In particular, data-driven reconstruction methods can produce high-quality images, if data sets
containing high-quality image targets are available to train the neural network. We demonstrate
this ability by showing that DirectPET can be trained to learn a mapping from low-count sino-
grams to high-count images. Subsequent reconstruction produces images of a quality that is
superior to those produced by OSEM-PSF.

The proposed DirectPET network advances the applicability of direct neural network recon-
struction. AUTOMAP6 and DeepPET7 have only been shown to produce single-slice 1 × 128 ×
128 images. AUTOMAP has specifically been critiqued8 for the image size being limited by
its large memory space requirement. For direct methods to be of practical relevance, they must
be able to produce larger image sizes as commonly used in clinical practice. DirectPET
was designed for efficiency, and we demonstrate single forward pass simultaneous reconstruc-
tion of multislice 16 × 400 × 400 image volumes. When batch operations are employed,
DirectPET can not only reconstruct an entire full-size 400 × 400 × 400 whole-body PET study
but does so in a little more than 1 s.

In this paper, the general advantages of direct neural network reconstruction methods and the
specific advancements of the proposed DirectPET network are explored with the specific con-
tributions being as follows:

1. A direct reconstruction neural network design: A three-segment architecture capable of
full-size multislice reconstruction along with a quantitative and qualitative analyses com-
pared to the conventional reconstruction benchmark of OSEM + PSF.

2. Effective direct reconstruction neural network training techniques: We propose specific
techniques (loss function, hyperparameter selection, and learning rate management) not
utilized in previous direct reconstruction methods to achieve efficient learning and high
image quality overcoming the often blurry images produced by neural networks using
simple L1 or L2 loss functions.

3. A path to superior image quality: We demonstrate that the image quality depends less on
the raw data and more on the target images used for training.

4. Challenges and a path to overcoming them: We discuss current challenges and limitations
associated with direct neural network reconstruction and propose a future path to reliably
surmounting these obstacles.
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2 Related Work

The terms deep learning and image reconstruction are often used in conjunction to describe a
significant amount of recent research8 that falls into one of three categories: (1) combination of
deep learning with a conventional analytical or statistical method; (2) use of a neural network as
a nonlinear postreconstruction filter for denoising and mitigating artifacts; and less commonly
(3) use of a neural network to generate an image directly from raw data. This last category of
direct neural network reconstruction, which forms the largest departure from conventional
methods, is the focus of our work.

Early research was based on networks of fully connected multilayer perceptrons9–12 that
yielded promising results, but only for simple low-resolution reconstructions. More recent efforts
have capitalized on the growth of computational resources, especially in the area of graphical
processing units (GPUs), which has led to deep networks capable of direct reconstruction. The
AUTOMAP network6 is a recent example that utilizes multiple fully connected layers followed
by a sparse convolutional encoder–decoder to learn a mapping manifold from measurement
space to image space. AUTOMAP is capable of learning a general solution to the reconstruction
inverse problem. However, the generality is achieved by learning an excessively high number of
parameters that limits its application to fairly small single-slice images (e.g., 1 × 128 × 128).
DeepPET7 is another example of direct neural network reconstruction that utilizes an encoder–
decoder architecture but forgoes any fully connected layers. Instead, this network utilizes con-
volutional layers to encode the sinogram input (1 × 288 × 269) into a higher dimensional feature
vector representation (1024 × 18 × 17) which is then decoded by convolutional layers to produce
yet another small single-slice image (e.g., 1 × 128 × 128). While both of these methods embody
significant advancements in direct neural network reconstruction, there are several noteworthy
differences to the DirectPET network presented here. As mentioned above, DirectPET is capable
of producing multislice image volumes (e.g., 16 × 400 × 400). We furthermore train and validate
DirectPET on actual raw PET data taken from patient scans as opposed to using simulated data.
Also not done previously, we include the attenuation maps as input to the neural network.
Finally, DeepPET was shown to become unstable at low-count densities generating erroneous
images,7 a problem not encountered for DirectPETwhich exhibits consistent performance across
all count densities.

Currently, a more common application of deep learning in the image formation process is
combining a neural network with conventional reconstruction. One method is using an image-to-
image neural network to apply an image-space operator to enhance the postreconstruction out-
put. Although the term “reconstruction” has been attached to some of these methods, the neural
network is not directly involved in solving the inverse imaging problem and is more accurately
described as a postreconstruction filter. These learned filters have produced improvements com-
pared to the conventional handcrafted alternatives. In PET imaging, these image-space methods
are often applied to low-dose images to produce normal dose equivalents,13–15 utilizing U-Net16

or ResNet17 style networks. Similarly, these methods are demonstrated to work for x-ray CT on
low-dose image restoration18 and limited angle19 applications. Jiao and Ourselin20 increased the
reconstruction speed by performing a simple backprojection of PET data and then utilizing
a neural network to reduce the typical streaking artifacts. Cui et al.21 used an unsupervised
approach to denoise a low-count PET image from the same patient’s previous high-quality
image.

As an alternative to the image-space methods, other efforts have included deep learning ele-
ments inside the conventional iterative reconstruction process creating unrolled neural network
methods. This often takes the form of using the neural network as a denoising or regularizing
operator inside the iterative loop for both PET22,23 and x-ray CT24,25 reconstruction. Gong et al.26

replaced the penalty gradient with a neural network in their expectation maximization network,
and Adler and Öktem27 replaced the proximal operators in the primal-dual reconstruction algo-
rithm. While the image-space and unrolled deep learning methods all demonstrated improve-
ment over conventional handcrafted alternatives, in addition to now containing a black box
component in the form of a neural network, they continue to carry all of the disadvantages
of conventional reconstruction methods, namely, the complexity of multiple projection and
correction components and a high computational cost. By comparison, direct neural network
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reconstruction methods are relatively simple operators with very high computational efficiency
once trained.

3 Methods

3.1 Network Architecture Overview

Figure 1 shows where the proposed DirectPET network fits in the PET imaging pipeline. Time-
of-flight (TOF) list-mode data are acquired and histogrammed into sinograms. Random correc-
tion, normalization, and arc correction are performed on the raw sinogram data in that order.
Scatter and attenuation correction are not applied in the sinogram domain but instead accounted
for by the learned parameters in the DirectPET neural network. Oblique plane sinograms are
eliminated by applying Fourier rebinning,28 and the TOF dimension of the resulting direct plane
sinograms is collapsed. The sinogram data could have been transformed to two-dimensional
non-TOF data in a single rebinning step29 but was done in two steps for convenience with readily
available software. X-ray CT data are acquired to create attenuation maps and for later anatomi-
cal visualization. A single forward pass through the DirectPET network of the PET/CT data then
produces the desired multislice image volume.

With reference to Fig. 2, DirectPET consists of three distinct segments each designed for a
specific purpose. An encoding segment compresses the sinogram data into a lower dimensional

Fig. 1 The DirectPET imaging pipeline uses TOF Fourier rebinned PET data and x-ray CT-based
attenuation maps to generate PET image volumes.

Fig. 2 The DirectPET reconstruction neural network consists of three distinct segments each with
a specific task: (a) the encoding segment is composed of convolutional layers that compress the
sinogram input; (b) the domain transformation segment implements Radon inversion by applying
masks to filter the compressed sinogram data into small fully connected networks for each of
a number of image patches that are then combined to produce an initial image estimate; and
(c) the refinement and scaling segment carries out denoising along with attenuation correction
and applies super-resolution techniques to produce a final full-scale image.
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space. A domain transformation segment uses specially designed data masking along with small
fully connected layers to carry out the Radon inversion needed to convert the compressed sino-
gram into image-space. Finally, a refinement and scaling segment enhances and upsamples an
initial image estimate to produce the final multislice image volume. Together, the segments com-
prise an encoding, transformation, and refinement and scaling architecture.30 We proceed by
describing each segment starting with the domain transformation layer, which is what enables
the DirectPET efficiency, followed by the encoder and then the refinement and scaling segment.

3.1.1 Domain transformation

The computational cost of performing the domain transformation from sinogram to image space
is a key challenge with direct neural network reconstruction. In previous research,6,9–12 this
was typically accomplished through the use of one or more fully connected layers where every
input element is connected to every output element. This results in a multiplicative scaling of the
memory requirements proportional to the size of the input and the number of neurons, i.e., the
number of sinogram bins and the number of image voxels. Figures 3(a) and 3(b) show a simple,
single layer reconstruction experiment where each bin in a 200 × 168 sinogram is connected to
every pixel in a corresponding 200 × 200 image. After training to convergence using a natural
image data set, examination of the learned activation maps shown in Fig. 3(c) reveals that net-
work learned an approximation to the inverse Radon transform. Along with noting the sinusoidal
distribution of the activation weights, the other key observation is that the majority of weights in
the activation map are near-zero, meaning they do not contribute to the output image and essen-
tially constitute irrelevant parameters.

With insight from this initial experiment, we designed a more efficient Radon inversion layer
to perform the domain transformation. We eliminated network connections that do not contribute
to the output image by creating small fully connected networks for each patch in the output
image that are only connected to the relevant subset of sinogram data. The activation maps from
the initial simple experiment were used to create a sinogram mask for each patch in the image.
Each of these masks is then independently applied to the compressed sinogram, and the surviv-
ing bins are fed to an independent fully connected layer connected to the pixels in the relevant
image patch. These patches are then reassembled to create the initial image estimate. When a
multislice image volume is reconstructed, the transformation is carried out independently for
each slice in the stack, and the volume is reassembled at output of the segment. The primary
design decision for this segment is selecting the size of the image patch to consider and is a trade-
off between execution speed and memory consumption. Considering that a downsized sinogram
(i.e., 168 × 200) is the input to the Radon inversion layer and a half-scale image estimate (i.e.,
1 × 200 × 200) is the output, on one end of the spectrum a patch size of a single pixel results in
31,415 fully connected networks (we only address pixels in the field of view). On the other end
of the spectrum, if the patch size equals the entire image, only a single fully connected network is
required, but this choice requires the maximum 1.055 billion network parameters. We have set-
tled on using 40 × 40 pixel patches as a baseline but have empirically found that patches with

Fig. 3 A single, fully connected layer can be trained to learn the distinctive sinusoidal pattern
associated with the Radon transform.
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30 × 30 to 50 × 50 pixels provide a good trade-off between speed and memory consumption.
Table 1 shows the parameter count as a function of patch size selection for 168 × 200 sinograms
and 200 × 200 images. The parameter count for AUTOMAP and a single fully connected layer
are included for comparison.

Having selected the patch size, the learned activation maps for each pixel in a patch are
summed together. However, the raw activation maps are noisy and applying a simple threshold
to generate a mask includes sinogram bins that should not contribute to a given image patch. The
activation maps are consequently refined using a three-step process of Gaussian smoothing to
filter high-frequency noise, morphological opening, and closing operations to remove noise and
fill gaps, and thresholding using Li’s iterative minimum cross entropy method.31 Figure 4 shows
the mask-refining process. The resulting size of the learned mask can also be tuned by adjusting
the size of the Gaussian filter (here σ ¼ 4) and the morphological structuring element (here a
disk of radius 8). A somewhat simpler approach that generates less memory efficient masks, but
achieves comparable results, would be to create sinogram masks by forward projecting image
patches surrounded by a small buffer.32

3.1.2 Encoding

Despite the significant efficiency gains achieved in the domain transformation segment, the
original uncompressed sinogram is still too large to process with only modest computational
resources. We initially explored simple bilinear scaling and angular and line of response com-
pression/summing but achieved superior performance allowing a convolutional encoder to learn
the optimal compression. The theory and motivation behind this segment is similar to that found
in the first half of an autoencoder33 where the convolutional kernels extract and forward essential
information in each successive layer. Figure 2(a) shows a detailed diagram of the encoding

Table 1 Selection of patch size is directly related to the required number of parameters in the
transform segment and inversely related to the number of masks and associated networks
impacting the execution speed.

Network Patch size Input size Output size
Segment

parameters
Number
of masks

AUTOMAP na 200 × 168 200 × 200 6,545,920,000 na

Fully connected layer 200 × 200 200 × 168 200 × 200 1,055,544,000 1

Radon inversion layer 60 × 60 200 × 168 200 × 200 627,224,400 16

Radon inversion layer 40 × 40 200 × 168 200 × 200 382,259,200 28

Radon inversion layer 30 × 30 200 × 168 200 × 200 353,583,000 52

Radon inversion layer 20 × 20 200 × 168 200 × 200 238,370,400 88

Radon inversion layer 10 × 10 200 × 168 200 × 200 209,706,900 336

Fig. 4 The mask creation process begins with summing the raw pixel activation maps for an
image patch and then undergoes a process of smoothing, morphological opening and closing,
and thresholding to produce the final mask.
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segment illustrating its architecture and chosen hyperparameters consisting of three convolu-
tional layers each with 128 3 × 3 kernels and a parametric rectified linear unit (PReLU)34

activation function. Spatial downsampling is accomplished by the second convolutional layer
employing a kernel stride of 2 along the r sinogram dimension. While we experimented with
the axial dimension (number of slices) of the input between 1 and 32 slices, we ultimately settled
on training DirectPET on 16 slices.

3.1.3 Refinement and scaling

The final neural network segment is responsible for taking the initial image estimate plus the
corresponding attenuation maps and removing noise and scaling the image to full size. The
attenuation maps added at this point in the network provide additional image space anatomical
information which significantly boosts the network’s image quality. The refinement and scaling
tasks draw on significant deep learning research in the areas of denoising35 and super-resolu-
tion.36 As shown in Fig. 2(c), the refinement and scaling segment uses a simple two-stage strat-
egy, where each stage contains convolutional layers followed by a series of ResNet17 blocks
that include an overall skip connection. This strategy is employed first at half spatial resolution
and then again at full resolution after a subpixel transaxial scaling by a factor of 2 using the
PixelShuffle37 technique. These two subsegments are followed by a final convolutional layer
that outputs the image volume. All layers in this segment use 64 3 × 3 convolutional kernels
and PReLU activation.

3.2 Neural Network Training

The DirectPET network was implemented with the PyTorch38 deep learning platform and
executed on single and dual Nvidia Titan RTX GPUs. Training occurred over 1000 epochs with
each epoch having 2048 samples of sinogram and image target pairs randomly drawn from
the training data in minibatches of 16. The Adam optimizer39 was used with β1 ¼ 0.5 and
β2 ¼ 0.999, which is similar to traditional stochastic gradient descent but additionally maintains
a separate learning rate for each network parameter. In addition to the optimizer, a cyclic learning
rate scheduler40 was employed that cycles the learning rate between a lower and upper bound
with the amplitude of the cycle decaying exponentially over time toward the lower bound. This
type of scheduler aids training since the periodic raising of the learning rate provides an oppor-
tunity for the network to escape suboptimal local minimum and traverse saddle points more
rapidly.

Based on a triangular wave function, our scheduler was defined as follows for the k’th
iteration

EQ-TARGET;temp:intralink-;e001a;116;290ηðkÞ ¼ ΛðkÞðηmax − ηminÞ0.99995n þ ηmin; (1a)

EQ-TARGET;temp:intralink-;e001b;116;247ΛðkÞ ≜ 2

���� k
1000

−
�

k
1000

þ 1

2

�����: (1b)

To determine appropriate values for the two bounds, an experiment was performed where the
learning rate was slowly increased and plotted against the loss. The results of this study led us to
designate ηmin ¼ 0.5 × 10−5 and ηmax ¼ 9.0 × 10−5.

The loss function is another primary component of neural network training. Previous
research41 dedicated to loss functions for image generation and repair suggested a weighted
combination of the elementwise L1 loss, which is an absolute measure, and a multiscale struc-
tural similarity (MS-SSIM)42 loss, which is a perceptual measure. We extended this idea by
eliminating the static weighting factor and instead developed a dynamically balanced scale factor
α between these two elements. We also added an additional perceptual feature loss component
based on a so-called VGG network.43 The loss between reconstructed image x̂ and target image x
was thus made to consist of three terms, namely
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EQ-TARGET;temp:intralink-;e002;116;735Lðx̂; xÞ ¼ βVGGðx̂; xÞ þ ð1 − αÞMAEðx̂; xÞ þ αMS − SSIMðx̂; xÞ: (2)

The VGG loss is based on a convolutional neural network of the same name. Pretrained on
the large ImageNet data set, which contains millions of natural images, each convolutional layer
of the VGG network is a general image feature extractor; earlier layers extract fine image details
such as lines and edges, while deeper layers extract larger semantic features as the image is
spatially downsampled. In our application, the output from the DirectPET network and the target
image are independently input to the VGG network. After the input passes through each of the
first four layers, the output is saved for comparison. The features from the DirectPET image are
then subtracted from the target image features for each of the four VGG layers. The sum of
the absolute value differences forms the VGG loss. That is

EQ-TARGET;temp:intralink-;e003;116;605VGGðx̂; xÞ ¼
X3
l¼0

jVGGlðx̂Þ − VGGlðxÞj: (3)

Thus accounting for perceptual differences helps the DirectPET network reconstruct images
of higher fidelity than otherwise possible.

The mean absolute error (MAE) loss denotes the mean absolute error between reconstructed
image x̂ and target image x calculated over all N voxels

EQ-TARGET;temp:intralink-;e004;116;505MAEðx̂; xÞ ¼ 1

N

XN−1

i¼0

jx̂i − xij: (4)

The MS-SSIM loss measures structural similarity between the two images based on lumi-
nance (denoted lM), contrast (denoted cj), and structure (denoted sj) components calculated at
M scales. More specifically

EQ-TARGET;temp:intralink-;e005;116;418MS − SSIMðx̂; xÞ ¼ 1 − lðx̂; xÞ
YM
j¼1

cjðx̂; xÞsjðx̂; xÞ; (5)

where

EQ-TARGET;temp:intralink-;sec3.2;116;354lðx̂; xÞ ¼ 2μx̂μx þ C1

μ2x̂ þ μ2x þ C1

;

EQ-TARGET;temp:intralink-;sec3.2;116;297cjðx̂; xÞ ¼
2σx̂σx þ C2

σ2x̂ þ σ2x þ C2

;

EQ-TARGET;temp:intralink-;sec3.2;116;262sjðx̂; xÞ ¼
σx̂x þ C3

σx̂σx þ C3

:

As usual, μx̂ and μx denote the two image means, and σ2x̂ and σ2x are the corresponding var-
iances while σx̂x is the covariance. The constants are given by C1 ¼ ðK1LÞ2, C2 ¼ ðK2LÞ2, and
C3 ¼ C2∕2, where L is the dynamic range of values while K1 ¼ 0.01 and K2 ¼ 0.03 are
generally accepted stability constants.

With respect to the weighting of the VGG loss, we used β ¼ 0.5 for all updates. In contrast,
we used a dynamically calculated value for α that trades off the MAE and MS-SSIM losses
against one another. That is

EQ-TARGET;temp:intralink-;e006;116;152α ¼
Piþn−1

j¼i MAEjPiþn−1
j¼i MAEj þ

Piþn−1
j¼i MS − SSIMj

; (6)

where i and j are iteration steps and n denotes the width of a running average window.
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4 Experiments and Results

We now describe details of our training, validation, and test data sets and then evaluate
performance of the DirectPET network in three areas. First, we examine the improvement in
reconstruction speed using the proposed method versus conventional iterative and analytical
reconstruction methods. Next, we evaluate the quantitative performance of the proposed method
on measures of mean absolute error, structural similarity, signal-to-noise ratio (SNR), and bias.
We also evaluate two different lesions by comparing line profiles, the full-width half-maximum
(FWHM), and zoomed images. Lastly, we review the image quality by examining patient images
from various anatomical regions with varying count levels.

4.1 Training and Validation Data

The data set is derived from 54 whole-body PET studies with a typical acquisition duration of
2 to 3 min per bed for a total of 324 field-of-views (FOVs) or 35,316 individual slices. PET
whole-body data sets are particularly challenging because the range of anatomical structures
and noise varies widely. Figures 5(a) and 5(b) shows the count density across all Fourier rebinned
sinograms showing slices ranging from 34,612 to 962,568 coincidence counts with a mean value
of 218,812 counts. All data were acquired on a Siemens Biograph mCT44 and reconstructed to
produce 400 × 400 image slices using the manufacturer’s standard OSEM+PSF TOF reconstruc-
tion with three iterations and 21 subsets including x-ray CT attenuation correction and a 5 × 5

Gaussian filter. These conventionally reconstructed images constitute the training targets for the
DirectPET network with the goal of producing images of similar quality. At the outset, 14 patients
were set aside with four going into a validation set used to evaluate the model during training and
10 patients comprising the test set only used to evaluate the final model. Although it is common to
normalize input and target data for neural network training, sincewe are interested in a quantitative
reconstruction, the values are not normalized but instead the input sinograms and target images are
scaled by a fixed value to create average data values closer to 1, which is conducive to stability
during neural network training. With this in mind, sinogram counts were scaled down by a factor
of 5 and image voxel Bq/ml values were scaled down by a factor of 400. During analysis, the
images were scaled back to their normal range to perform comparisons in the original units.

4.2 Reconstruction Speed

One of the most pronounced benefits of direct neural network reconstruction is the computa-
tional efficiency of a trained network and the resulting speed up in the subsequent image for-
mation process. Although a faster reconstruction may not greatly benefit a typical static PET
scan, studies where a large number of reconstructions are required such as dynamic or gated
studies with many frames or gates will see a significant benefit. In these cases, where conven-
tional reconstruction could take tens of minutes, it would be reduced to tens of seconds. A fast
reconstruction would also allow a radiologist reading a study to rerun the reconstruction multiple
times with different parameters very quickly if desired. Admittedly, this would require the
training of a plurality of neural networks to choose from, but we believe this is what will

Fig. 5 (a), (b) The histograms show the relative distribution of slice counts in the Fourier rebinned
sinograms for the training and test sets. (c) The reconstruction time of a single FOV for both
conventional methods and DirectPET demonstrating 7.2× and 4.9× improvement, respectively.
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ultimately be required for direct neural network reconstruction similar to the selection of iter-
ations, subsets, filter, and scatter correction in conventional reconstruction to produce the most
diagnostically desirable image. In addition, very fast reconstruction could enable entirely new
procedures such as interventional PET where a probe is marked with a radioactive tracer, or
performing radiation or proton therapy tumor ablation in a single step with real-time patient
imaging/positioning and treatment versus the two-step process common today.

A comparison of reconstruction speed is shown in Fig. 5(c) where all three methods start
from the same set of oblique TOF sinograms and end with a final whole-body image volume.
The test was run on all 10 whole-body data sets, and the average time shown for each method
refers to reconstruction of a single FOV (which makes up 109 image slices). We followed stan-
dard clinical protocols. OSEM + PSF TOF reconstruction was based on 21 subsets and 3 iter-
ations. We used attenuation and scatter correction as well as postreconstruction smoothing by a
5 × 5 Gaussian filter. Filtered backprojection (FBP) included the same corrections and filtering.
Both reconstructions were performed on an HP Z8 G4 workstation with two 10-core Intel Xeon
Silver 4114 CPUs running at 2.2 GHz. DirectPET utilized a patch size of 40 × 40 pixels and a
batch size of 7. These reconstructions were performed on an HP Z840 workstation with an Intel
E5-2630 CPU running at 2.2 GHz and a single Nvidia Titan RTX GPU.

The results show that reconstruction with the DirectPET image formation pipeline on average
takes 4.3 s from start to finish. Is noteworthy that 3 s are dedicated to preprocessing and the
Fourier rebinning while a mere 1.3 s is needed for the forward reconstruction pass of the net-
work. If additional realizations were desired with different reconstruction parameters, the
additional DirectPET reconstructions would only require the 1.3-s forward pass of the network.
In comparison, OSEM + PSF TOF reconstruction of the same data averaged 31 s while FBP
averaged 21 s, which is 7.2× and 4.9× slower, respectively.

4.3 Quantitative Image Analysis

For this section on quantitative performance and the next section focusing on qualitative aspects,
two versions of DirectPETwere trained. The first version, which will be referred to as DirectPET,
was trained using the entire full-count PETwhole-body training set. The second version, which
will be referred to as DirectPET-50, was trained with half of the raw counts removed using list-
mode thinning while retaining the full-count images as training targets. This second network
evaluates the ability of the DirectPET network to produce high-quality images from low-count
input data. For comparison, the half-count raw data were also reconstructed with OSEM + PSF
TOF using the same reconstruction parameters as the full-count data. Those images are referred
to as OSEM+PSF-50.

Figure 6(a) is the measured SNR over an average of three volumes-of-interest (VOIs) in areas
of relative uniform uptake in the liver for each of the 10 patients in the test set. The DirectPET
and DirectPET-50 networks both exhibit similar but slightly higher SNR values compared with
the target OSEM + PSF. This indicates that the neural network produces slightly smoother
images with less noise. Smoothing is a common feature of neural networks due to the data-driven
way they optimize over a large data set. Smoother images are, of course, only acceptable if
structural details are preserved along with spatial resolution. This is explored below. As one
would predict, OSEM + PSF-50 reconstructions exhibit the lowest SNR indicating a lack of
ability to overcome lower count input data.

Bias measurements, which were calculated relative to the target OSEM + PSF images, indi-
cate if there is an overall mean deviation from the target value. Again these measurements were
calculated from three VOIs in the liver of each patient and averaged. The results shown in
Fig. 6(b) first indicate there is no global systematic bias with the neural network reconstruction
given that about the same amount of positive and negative bias is present across the 10 patients.
The average absolute bias for DirectPET is 1.82% with a maximum of 4.1%. For DirectPET-50,
the average is 2.04% with a maximum of 4.60%. This demonstrates that the neural networks
trained on full- and half-counts show similar low biases. Conversely, the OSEM + PSF-50
images have a negative bias around 50%.

The MAE is a common metric in deep learning research to indicate the accuracy of a trained
model and is an explicit component of our loss function. Figure 6(b) shows the MAE for each
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patient image volume, again compared to the target OSEM + PSF volume. To prevent the many
zero-valued voxels present in the images from skewing the metric, the absolute difference is only
calculated for nonzero voxel values. For DirectPET, the resulting average MAE value across the
10 data sets is 33.07 Bq∕ml. For DirectPET-50 and OSEM + PSF-50, the average MAE values
are 33.57 and 265.7 Bq∕ml, respectively. The nearly identical performance of the two neural
networks is driven by MAE being a component of their loss function causing them to specifically
optimize this measurement in the same way.

Defined already, MS-SSIM values range from 0 to 1, where 0 means no similarity whatsoever
while 1 means that the images are identical. Figure 6(d) shows MS-SSIM values for each
reconstruction method with full-count OSEM + PSF serving as the reference. DirectPET and
DirectPET-50 are seen to achieve similar values with both networks consistently at or above
a value of 0.99 across the 10 data sets. The fact that MS-SSIM is included in the loss function
is what once again leads to similar high performance. By contrast, OSEM + PSF-50 achieves an
average structural similarity score of just 0.88.

In Fig. 7, we analyze two lesions in two independent images and compare the benchmark
OSEM + PSF reconstruction to DirectPET, DirectPET-50, and OSEM+PSF-50 reconstructions
with line profiles, measures of FWHM and zoomed images. While the line profiles provide some
intuition on the neural networks’ performance on spatial resolution, the measurements are from
patient data rather than a well-defined point source or phantom. Spatial resolution can thus only
be loosely inferred relative to the reference reconstruction. That is, if spatial resolution perfor-
mance is poor, this should be evident in larger FWHM measurements of the neural network
methods compared to the reference. In Fig. 7(a), the line profiles between both neural networks
and the reference image are largely overlapping. The FWHM of DirectPET is 0.75% larger than
the reference, DirectPET-50 is 0.98% smaller and OSEM + PSF-50 is 4.9% larger. In Fig. 7(b),
a larger lesion is analyzed and in this case the peak of the line profile is distinguishable between
the two neural network methods and the reference, with the DirectPET neural network achieving
a maximum value 6.7% less than the reference and DirectPET-50 14.5% less.

From a qualitative aspect the line profiles, FWHM measurements and zoomed images seem
to indicate reasonable neural network preservation of spatial resolution for this sample of lesions
while also having a slightly higher SNR performance as discussed above. Although the focus of
this paper is primarily on introducing direct neural network reconstruction as a viable method,

Fig. 6 Quantitative measurements of the reference OSEM + PSF reconstructions, DirectPET,
DirectPET trained on half-count input data, and OSEM + PSF reconstructed with half-count input
data show (a) the neural network methods produce images with less noise, (b) introduce a non-
systematic bias of <5%, (c) produce low absolute voxel error, and (d) produce images that are
perceptually very similar to the target. These plots also show that the neural network trained with
only half of the raw counts performed about the same as the network trained on full counts from
a quantitative perspective.
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the characterization of two randomly selected lesions can best be described as a preliminary and
somewhat anecdotal study. We defer a quantitative examination of a large number of lesions
along with the more well-defined procedures of NEMA spatial resolution and image quality
to future work.

4.4 Qualitative Image Analysis

In Fig. 8, we examine a sampling of 400 × 400 images slices from various regions of the body
containing different count levels, ranging from 330k counts down to 79k counts. We again com-
pare DirectPET and DirectPET-50 reconstructions to the OSEM + PSF reference. Overall, visual
comparison indicates strong similarity between the images. In particular, areas of high tracer
uptake, such as the chest in row (a), the lesions in row (b), and the heart in row (c), all show
little difference to the reference images. Even the lower count images in rows (d) and (e) exhibit
nearly identical areas of high uptake. On close inspection of areas of lower uptake, while still very
similar to the reference, there are minor differences in intensity, structure, and blurring present.
Whether these subtle differences are clinically relevant is an open question to be explored in future
research on neural network reconstruction to include lesion detectability and observer studies.

4.5 Limitations and Future Challenges

One long-term challenge to direct neural network reconstruction is understanding the boundaries
and limits of a trained network when the quality and content of a medical image is at stake.
The data-driven nature of deep learning is both its most powerful strength and greatest weakness.
As we and others have shown, a neural network can, somewhat counter intuitively, take a data set
and essentially learn the mapping of physics and geometry of PET image reconstruction despite

Fig. 7 Quantitative analysis of two lesions showing a line profile and FWHM for each reconstruc-
tion method.

Whiteley, Luk, and Gregor: DirectPET: full-size neural network PET reconstruction from sinogram data

Journal of Medical Imaging 032503-12 May∕Jun 2020 • Vol. 7(3)



the inherent presence of significant noise. On the other hand, there is no mathematical or stat-
istical guarantee that some unknown new data will be reconstructed with the same image quality.
To combat this uncertainty large carefully curated data sets for training and validation could be
maintained that uniformly represent the entire distribution of data a given neural network must
learn (ethnicity, age, physical traits, tracer concentration, disease, etc.). While this someday may
be possible, in the near term a more practical approach is to better understand the boundaries of
the network’s underlying learned distribution and develop techniques to classify or predict
the reconstructed quality of previously unseen data, perhaps again utilizing a neural network
for this task, and revert to conventional reconstruction techniques if the predicted image quality
falls below a certain threshold.

There is also the challenge of bootstrapping neural network reconstruction training when
a new scanner geometry, radiopharmaceutical, or other aspect introduces the need to develop
a fresh reconstruction (i.e., system matrix and corrections). At the outset of these new develop-
ments, there is no data to train the neural network, and so skipping the step of developing con-
ventional reconstruction methods, at the absolute least to create the data sets for neural network
training, is not practical. It is perhaps possible and even likely to one day create data sets entirely
from simulation that translate into high-quality neural network images of patients in the physical
world, but this still remains to be seen.

A more logistical drawback of neural network reconstruction arises if a variety of reconstruc-
tion styles/parameters (attenuation, scatter, filter, noise, etc.) are desired. A single network is
likely insufficient to meet this need, and the solution is to train multiple neural networks each
specifically targeted to produce images with certain characteristics. Although this requires the
training and management of multiple networks, the computational burden can possibly be miti-
gated through the use of transfer learning, which accelerates the training of a neural network on a
new reconstruction by starting with a network previously trained on a similar reconstruction.

Regarding comparison with other algorithms, a limitation common to this work and all recent
deep learning medical image reconstruction research is the lack of a robust platform to consis-
tently compare results. Ideally, a large database containing raw data as well as associated state-
of-the-art reconstructions would be publicly available for benchmarking new algorithms. The
absence of such a database combined with the performance sensitivity of neural networks for a
given data set in turn makes it challenging to directly compare the image quality of our method

Fig. 8 Full-resolution test set reconstructions using OSEM + PSF, DirectPET, and DirectPET-50
methods from a variety of body locations and count levels.

Whiteley, Luk, and Gregor: DirectPET: full-size neural network PET reconstruction from sinogram data

Journal of Medical Imaging 032503-13 May∕Jun 2020 • Vol. 7(3)



with existing image space, unrolled network, and other direct reconstruction methods, thus limit-
ing the comparison to differences in approach, computational efficiency, and implementation
complexity as discussed in Sec. 1.

5 Conclusion

We have presented DirectPET, a neural network capable of full size volume PET reconstruction
directly from clinical sinogram data. The network contains three distinct segments, namely, one
for encoding the sinogram data, one for converting the resulting data to image space, and one for
refining and scaling the image for final presentation. The DirectPET network overcomes the key
computational challenge of performing the domain transformation from sinogram to image space
through the use of a Radon inversion layer enabling neural network reconstructions significantly
larger (16 × 400 × 400) than any previous works. When batch operations are considered, the
reconstruction of an entire PETwhole-body scan (e.g., 400 × 400 × 400) is possible in a single,
very fast forward pass of the network.

Our work also shows the ability of a neural network to learn a higher quality reconstruction
than the conventional PET benchmark of OSEM + PSF, if provided a training set with superior
target images. This capability was demonstrated by removing half the counts in the raw data
through list-mode thinning, training the DirectPET network to reconstruct full-count images
from half-count sinogram data, and comparing the results to OSEM + PSF reconstructions
on the decimated data. The results showed that the proposed neural network produced images
nearly equivalent to using the full-count data and superior to conventional reconstruction of the
same data. While DirectPET was purposefully trained to match the performance of the standard
Siemens OSEM + PSF reconstruction, similarly other suitable techniques such as maximum a
posteriori reconstruction or adding a nonlocal means filter, both of which are known to produce
superior images, could have been used as the neural network training target.

Looking toward future work, there are many possibilities in network architecture, loss func-
tions, and training optimization to explore, which will undoubtedly lead to more efficient recon-
structions and even higher quality images. However, the biggest challenge with producing
medical images is providing overall confidence on neural network reconstruction on unseen
samples. While the understanding of deep learning techniques is growing and becoming less
of a black box, future research should investigate the boundaries and limits of trained neural
networks and how they relate to the underlying data distribution. In addition, research to under-
stand and quantify the clinical relevance and impact of neural network-generated images will be
an important step toward eventual adoption.
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