SPIE publishes accepted journal articles as soon as they are approved for publication. Journal issues are considered In Progress until all articles for an issue have been published. Articles published ahead of the completed issue are fully citable.
Purpose: We describe the creation of computational models of lung pathologies indicative of COVID-19 disease. The models are intended for use in virtual clinical trials (VCT) for task-specific optimization of chest x-ray (CXR) imaging.
Approach: Images of COVID-19 patients confirmed by computed tomography were used to segment areas of increased attenuation in the lungs, all compatible with ground glass opacities and consolidations. Using a modeling methodology, the segmented pathologies were converted to polygonal meshes and adapted to fit the lungs of a previously developed polygonal mesh thorax phantom. The models were then voxelized with a resolution of 0.5 mm × 0.5 mm × 0.5 mm and used as input in a simulation framework to generate radiographic images. Primary projections were generated via ray tracing while the Monte Carlo transport code was used for the scattered radiation. Realistic sharpness and noise characteristics were also simulated, followed by clinical image processing. Example images generated at 120 kVp were used for the validation of themodels in a reader study. Additionally, images were uploaded to an Artificial Intelligence (AI) software for the detection of COVID-19.
Results: Nine models of COVID-19 associated pathologies were created, covering a range of disease severity. The realism of the models was confirmed by experienced radiologists and by dedicated AI software.
Conclusions: A methodology has been developed for the rapid generation of realistic 3D models of a large range of COVID-19 pathologies. The modeling framework can be used as the basis for VCTs for testing detection and triaging of COVID-19 suspected cases.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.
Purpose: The outbreak of COVID-19 or coronavirus was first reported in 2019. It has widely and rapidly spread around the world. The detection of COVID-19 cases is one of the important factors to stop the epidemic, because the infected individuals must be quarantined. One reliable way to detect COVID-19 cases is using chest x-ray images, where signals of the infection are located in lung areas. We propose a solution to automatically classify COVID-19 cases in chest x-ray images.
Approach: The ResNet-101 architecture is adopted as the main network with more than 44 millions parameters. The whole net is trained using the large size of 1500 × 1500 x-ray images. The heatmap under the region of interest of segmented lung is constructed to visualize and emphasize signals of COVID-19 in each input x-ray image. Lungs are segmented using the pretrained U-Net. The confidence score of being COVID-19 is also calculated for each classification result.
Results: The proposed solution is evaluated based on COVID-19 and normal cases. It is also tested on unseen classes to validate a regularization of the constructed model. They include other normal cases where chest x-ray images are normal without any disease but with some small remarks, and other abnormal cases where chest x-ray images are abnormal with some other diseases containing remarks similar to COVID-19. The proposed method can achieve the sensitivity, specificity, and accuracy of 97%, 98%, and 98%, respectively.
Conclusions: It can be concluded that the proposed solution can detect COVID-19 in a chest x-ray image. The heatmap and confidence score of the detection are also demonstrated, such that users or human experts can use them for a final diagnosis in practical usages.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.
Purpose: Given the recent COVID-19 pandemic and its stress on global medical resources, presented here is the development of a machine intelligent method for thoracic computed tomography (CT) to inform management of patients on steroid treatment.
Approach: Transfer learning has demonstrated strong performance when applied to medical imaging, particularly when only limited data are available. A cascaded transfer learning approach extracted quantitative features from thoracic CT sections using a fine-tuned VGG19 network. The extracted slice features were axially pooled to provide a CT-scan-level representation of thoracic characteristics and a support vector machine was trained to distinguish between patients who required steroid administration and those who did not, with performance evaluated through receiver operating characteristic (ROC) curve analysis. Least-squares fitting was used to assess temporal trends using the transfer learning approach, providing a preliminary method for monitoring disease progression.
Results: In the task of identifying patients who should receive steroid treatments, this approach yielded an area under the ROC curve of 0.85±0.10 and demonstrated significant separation between patients who received steroids and those who did not. Furthermore, temporal trend analysis of the prediction score matched expected progression during hospitalization for both groups, with separation at early timepoints prior to convergence near the end of the duration of hospitalization.
Conclusions: The proposed cascade deep learning method has strong clinical potential for informing clinical decision-making and monitoring patient treatment.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.
Purpose: The goal of this research is to develop innovative methods of acquiring simultaneous multidimensional molecular images of several different physiological random processes (PRPs) that might all be active in a particular disease such as COVID-19.
Approach: Our study is part of an ongoing effort at the University of Arizona to derive biologically accurate yet mathematically tractable models of the objects of interest in molecular imaging and of the images they produce. In both cases, the models are fully stochastic, in the sense that they provide ways to estimate any estimable property of the object or image. The mathematical tool we use for images is the characteristic function, which can be calculated if the multivariate probability density function for the image data is known. For objects, which are functions of continuous variables rather than discrete pixels or voxels, the characteristic function becomes infinite dimensional, and we refer to it as the characteristic functional.
Results: Several innovative mathematical results are derived, in particular for simultaneous imaging of multiple PRPs. Then the application of these methods to cancers that disrupt the mammalian target of rapamycin signaling pathway and to COVID-19 are discussed qualitatively. One reason for choosing these two problems is that they both involve lipid rafts.
Conclusions: We found that it was necessary to employ a new algorithm for energy estimation to do simultaneous single-photon emission computerized tomography imaging of a large number of different tracers. With this caveat, however, we expect to be able to acquire and analyze an unprecedented amount of molecular imaging data for an individual COVID patient.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print format on
SPIE.org.