You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
1 April 2006Thickness of silicon-nitride antireflective coating on a silicon waveguide measured by an integrated micromechanical gauge
Antireflective (AR) coating on waveguides with high refractive index is imperative to minimize insertion losses. In fabricating silicon, rectangular, suspended waveguides on silicon-on-insulator (SOI) wafers, a single Si3N4 layer is deposited on the waveguide walls. For the purpose of applying an optimum layer, we develop an integrated micromechanical gauge to determine the coating width by measuring the induced stress in the silicon. Gauges at different sites on a wafer produce results with a standard deviation of about 0.5%. The insertion loss due to the waveguides is measured directly by coupling a laser beam at 1550 nm from a single-mode fiber to the waveguide, then to another fiber and a detector. Tests are run on six wafers and two types of devices: a waveguide with two facets and a waveguide with a gap, presenting four facets. The optimal silicon-nitride thickness is found at 200 nm, featuring a fiber-waveguide-fiber insertion loss of about 1 dB for a two-facet device and 1.7 dB for a four-facet device.
The alert did not successfully save. Please try again later.
Michael M. Tilleman, Dan Haronian, David Abraham, "Thickness of silicon-nitride antireflective coating on a silicon waveguide measured by an integrated micromechanical gauge," J. Micro/Nanolith. MEMS MOEMS 5(2) 023011 (1 April 2006) https://doi.org/10.1117/1.2198815