You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
21 November 2014Parametric source-mask-numerical aperture co-optimization for immersion lithography
Source mask optimization (SMO) is a leading resolution enhancement technique in immersion lithography at the 45-nm node and beyond. Current SMO approaches, however, fix the numerical aperture (NA), which has a strong impact on the depth of focus (DOF). A higher NA could realize a higher resolution but reduce the DOF; it is very important to balance the requirements of NA between resolution and the DOF. In addition, current SMO methods usually result in complicated source and mask patterns that are expensive or difficult to fabricate. This paper proposes a parametric source-mask-NA co-optimization (SMNO) method to improve the pattern fidelity, extend the DOF, and reduce the complexity of the source and mask. An analytic cost function is first composed based on an integrative vector imaging model, in which a differentiable function is applied to formulate the source and mask patterns. Then, the derivative of the cost function is deduced and a gradient-based algorithm is used to solve the SMNO problem. Simulation results show that the proposed SMNO can achieve the optimum combination of parametric source, mask, and NA to maintain high pattern fidelity within a large DOF. In addition, the complexities of the source and mask are effectively reduced after optimization.