You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
1 August 2008Analysis of sensing performance of Gaussian-shaped metallic nanogratings
A new type of structure which is composed of a Gaussian profile-shaped metallic nanograting, was put forth from the nanofabrication point of view. Dependence of the structural parameters on the sensitivity was analyzed by means of a multiple multipole program (MMP) method. One of the important applications of the nanograting is in biosensing: immunoassay. Our numerical simulation results showed that the sensitivity to refractive index of 490 nm/RIU and the reflection spectra at site of full-width at halfmaximum (FWHM) ~9 nm can be obtained through the optimized structure. The figure of merit (FOM) of the sensor can exceed 55. The resonant wavelength increases linearly with increasing of the refractive index of bio-samples. These reflection properties make the nanograting more suitable to be used in the localized surface plasma resonance (LSPR)-based biosensors for immunoassay.