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Abstract. Raman scattering is a nondestructive technique that is able to supply information on
the crystal and electronic structures, strain, temperature, phonon–phonon, and electron–phonon
interaction. In the particular case of semiconductor nanowires, Raman scattering provides addi-
tional information related to surfaces. Although correct, a theoretical approach to analyze the
surface optical modes loses critical information when retardation is neglected. A comparison of
the retarded and unretarded approaches clarifies the role of the electric and magnetic polarization
in the Raman selection rules. Since most III–V compounds growing in the zincblende phase
change their crystal structure to wurtzite when growing as nanowires, the polariton description
will be particularized for these two important crystal phases. Confined phonons exist in cylin-
drical nanowires and couple with longitudinal and transverse modes due to the presence of the
nanowire’s surface. This coupling vanishes in the case of rotational symmetry. The boundary
conditions of the electromagnetic fields on small-size nanowires (antenna effect) have a dramatic
effect on the polarization properties of a Raman spectrum. © 2013 Society of Photo-Optical

Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JNP.7.071598]
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1 Introduction

Nanowires (NWs) are quasi-one-dimensional (1-D) materials where one of the dimensions,
usually in the 10- to 100-nm range, is much smaller than the other two (in the range of a
few microns). They were first called nanowhiskers, but they have received other names in the
literature such as nanorods or nanocolumns. They can be made of metals, polymers, or semi-
conductors, and the most common cross-sections are nearly cylindrical, hexagonal, triangular, or
squared. The NW geometry has several advantages as compared to quantum wells or quantum
dots, the most elemental one being the large surface-to-volume ratio as compared to a thin film
(additional contribution of the lateral surface). Depending on the density and cross-section, an
NW bunch can have 100 times more surface than a thin film of the same dimensions. This fact
can be useful in the development of solar cells or chemical sensors.1 On the other hand, new
concepts of heterostructures arise from the NW shape, like core/shell or axial heterostructures
(quantum dots in a wire). Core/shell nanostructures can be particularly useful in the development
of solar cells,2 while axial heterostructures are suitable for quantum computing.3

Semiconductor NWs can be grown by chemical vapor deposition, chemical beam epitaxy, or
molecular beam epitaxy.4–6 Usually, they are grown using gold as a catalyst,7 but depending on
the semiconductor, they can also be grown without a catalyst.5 They are commonly grown on a
convenient substrate like Si or GaAs, which can be prepatterned in order to develop ordered NW
arrays.1 Due to the existence of a free surface, heterostructures can be grown with larger lattice
mismatch than superlattices or quantum wells.8 The reason is the relaxation of the structure at the
sample surface.9 In very thin NWs, the fact that the bond distances close to the surface are larger
due to relaxation effects produces changes in the electronic band structure of the material. NWs
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have a huge amount of applications—in photonic as light emitting diodes or lasers, solar cells, as
energy harvesting materials,1,2 in transport as single-electron transistors,3,10 or in phototransport
devices.11,12

One more particularity of semiconductor NWs is the fact that the balance between surface
energy and bulk energy gives rise to new crystal structures, not stable when grown in bulk sys-
tems. In particular, most of the III–V semiconductors crystallizing in the zincblende (ZB) struc-
ture in bulk develop the wurtzite (WZ) structure when growing in the form of NWs;7 actually,
very often, ZB staking faults appear within the WZ structure. A recent experiment on InAs NWs
photoluminescence13 shows the existence of two bands in the emission at low temperatures,
presumably one with origin in the ZB region and a second from the WZ region. From this varia-
tion, an energy gap of 2.45 eV for the E1 gap of InAs has been obtained. This value is in very
good agreement with resonant Raman measurements14 and ab initio calculations.15 High-
resolution transmission electron microscopy images clearly show the existence of these two
regions. The same behavior has been observed in other semiconductors, like InP.6 A detailed
band structure calculation in the WZ phase has been performed in these two compounds.15,16

Figure 1 shows a set of InN NWs grown by molecular beam epitaxy under different temper-
atures, nitrogen flux, and In vapor pressure conditions. We can observe how the shape of the
NWs can be completely different depending on the growth conditions.

Finally, the electronic bands bend at the surface of the NWs as in any surface in a solid, but in
the case of an NW the effect is more notable due to the large contribution of the surface
compared to the inner part of the NW. Although the origin is not completely clear, some NW
semiconductors have a depletion layer at the surface, some others an accumulation layer.5,17

The accumulation layer influences both the optical18 and transport properties.19

In this first work, we will focus on the theoretical development of the Raman theory, first in
bulk and then particularizing for the case of NWs. In a second work, we will pay more attention
to the comparison of the existing theories with the available experimental results.

Fig. 1 Indium nitride NW morphologies obtained under varied metal flux and substrate temper-
ature (thermocouple temperature using the 1 × 1 cm2 with 8.88 × 8.88 mm2 opening) and con-
stant growth time of 300 min and nitrogen flux FN ¼ 2 sccm (cc∕min at 0°C at 1 atm of
pressure) and a plasma excitation power PN ¼ 500 W, which corresponds to a growth rate at
stoichiometry of ∼12.5 m∕min. Arrows indicate the modifications produced with the increase
of the substrate temperature Ts. (The author thanks Dr. Christian Denker for providing some
SEM images of his PhD dissertation.)
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2 Raman Scattering

In a semiconductor, most of the incident radiation is either reflected, absorbed, or transmitted;
only a small amount is scattered. The elastically scattered light is called Rayleigh scattering.
Actually, the elastic scattering is possible due to the existence of defects in the sample; in a
nearly perfectly grown material with translational symmetry, the elastic scattering must be
very low.20,21 A tiny amount of the scattered light, in general several orders of magnitude smaller
than that scattered elastically, corresponds to inelastic light scattering or Raman scattering.

The Raman effect or light scattering was predicted by Smekal in 1923 (Ref. 22) and mea-
sured simultaneously by Landsberg and Mandelstam,23 and by Raman and Krishnan24 in solids
and liquids, respectively. Actually, the first set of authors discovered the effect previously, but the
publication of the second set of authors appeared earlier in 1928. For this discovery, Raman was
the Nobel laureate in physics in 1930. Raman was the only Third-World scientist who received
the Nobel laureate for a research performed in an undeveloped country.

Although the Raman effect is understood usually as the scattering of light due to phonons,
any kind of inelastic light scattering is called Raman scattering. The scattering by electronic
excitations or magnetic excitations are also Raman scattering. In this review, we are going
to limit the analysis to the Raman scattering by phonons. The classical theory of the Raman
effect was developed by the same authors who discovered the effect, Mandelstam et al.,25

and the quantum theory by Tamm.26 A rigorous development of the classical theory can be
found in the book of Born and Huang.27 We will follow here the development of Cantarero
et al.28,29 and Trallero-Giner et al.30

In the infrared, there is a direct coupling of the electric field of the light with the phonons, but
in Raman scattering, the coupling is via virtual electronic states, as it was shown many years ago
by Loudon.31 If the semiconductor gap is around the energy of the laser or scattered light, the
transition between electronic states becomes real and the Raman signal increases orders of mag-
nitude. In that case, we have to take into account the width of the electronic states, and the
process is usually referred as resonant Raman scattering (RRS).28 Double and triple resonances
(multiple resonances with several electronic levels) can also increase, additionally, the scattering
signal.32 Electric fields,33 magnetic fields,34 or high pressure35 can also be tuned to produce RRS.
Excitons play an important role in first-order RRS (Ref. 28) or Raman scattering by one phonon.
In second-order RRS (scattering by two phonons at the Γ-point), excitons also play a funda-
mental role in the resonant behavior36 because the intermediate excitonic state can also resonate.
Electron–phonon interaction is thus the crucial part of the resonant process, since there is a direct
interaction between the electrons and the phonons, even out of resonance. Electron–phonon
interaction is actually very important within the electronic transitions itself since it renormalizes
the electronic gap of the materials37 and gives a broadening to the electronic states. Also, when
the electrons have enough energy to emit optical phonons, the photoluminescence processes
become more efficient since the emission probability increases. Electron–phonon interaction
is important not only in optics but also in transport, through the different relaxation
mechanisms.38

The laser wavelength or laser energy is the other crucial part of the resonant process, since the
variation of the laser energy approaching the electronic transition is the basis of the RRS. As an
example, the Raman signal of strontium titanate/barium titanate (STO/BTO) quantum wells
when illuminated with visible light was not good enough to even see the Raman signal. But
ultraviolet light has been shown to be very efficient for analyzing STO/BTO quantum wells
constituted even by a single layer39 due to resonance effects. In single wires, since there is a
small amount of material, resonant effects are very important15 to make the Raman effect
observable.

In nonpolar semiconductors, there is no splitting between the the transverse (TO) and longi-
tudinal (LO) optical phonons, but in polar semiconductors like GaAs, there is a splitting related
to the difference between the low- and high-frequency dielectric permittivities (or the effective
charges). The splitting is a measure of the polarity of the semiconductor. In polar semiconduc-
tors, plasmons interact with LO phonons giving rise to an anticrossing when the plasma fre-
quency coincides with the LO phonon frequency, which depends on the electron
concentration.40 From the measurement of the two split frequencies, the electron concentration
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can be obtained.40 In heavily doped samples, the electronic background is of the order of the
Raman signal; electrons interact strongly with the phonons giving rise to the Fano lineshape,40,41

produced by the sum of quantum probabilities of the two processes, which can have opposite
signs. Since phonons depend on the mass of the ions, Raman scattering has been used in the last
years to study the isotopic composition of isotopically engineered samples42–44 and phonon
anharmonicities.45 Phonons are also sensitive to pressure or stress variations.46,47 In thin
films and semiconductor nanostructures, Raman scattering is used very often to obtain the lattice
mismatch through the phonon deformation potentials.48

Recently, with the advances in the fabrication of holographic filters (notch or edge filters), a
single spectrometer is enough to study the Raman scattering in most of the materials. A good
holographic filter has a cutoff of ∼100 cm2, or even less. There are, in the market, several com-
panies selling compact instruments, smaller than a shoebox, completely equipped connectable to
a portable computer capable of obtaining reasonable Raman scattering signals at a competitive
price. If we need to study phonon modes at lower frequencies, a double or triple spectrometer, in
subtractive mode, is needed. Also, if we need to increase the resolution because the phonon lines
are narrow, we can use a triple spectrometer in additive mode and lower the temperature to
decrease the phonon anharmonicities. Most of the Raman systems are equipped with a charged
coupled device, but if we really need resolution, we have to go back to the photomultipliers.
In the book of Kuzmany,49 there is a complete description of the apparatus used in Raman scat-
tering: spectrometers, gratings, and detectors.

During the last decades, part of the scientific community has been dedicated to characterize,
by Raman scattering, thin films, quantum wells, quantum dots, quantum wires, or even more
complex nanostructures.50 In the simple case of a thin film, if we use the typical collection, a
photographic camera objective, producing a laser spot ∼10 μm, most of the Raman signal will
come from the substrate and it can mask the really important signal. We need, in that case, the use
of a microscope (micro-Raman or μ-Raman system), where the laser spot can be <1 μm (with a
confocal microscope, we can go to the diffraction limit50). However, the use of a microscope has
a couple of disadvantages. First, all the light, including the reflected light, goes through the
entrance slit of the spectrometer (unless we use a notch or edge filter). The second disadvantage
is that the selection rules are not completely fulfilled. If we have an objective of 100× and a
numerical aperture50 NA ¼ 0.9, such as that shown in Fig. 2(a), the entrance angle with a refrac-
tive index of 3 (a typical value for semiconductors) will be ∼17.5 deg. In a typical. μ-Raman
system, a confocal microscope is employed in order to perform the measurements on a specific
point of the sample (below 1 μm in lateral resolution and 100 nm in depth). A confocal micro-
scope and a motorized xyz plate allow the mapping of small areas at different depths. In
Fig. 2(b), there is a scheme of a confocal system where we observe how the light enters
into a sample with a smaller angle due to the difference of refractive indices. Although we
do not have a complete backscattering geometry, the selection rules are fulfilled to a great extent
due to the difference in refractive index.

3 Scattering Efficiency

In order to compare the Raman signal or the Raman intensity of different materials, it is con-
venient to use the Raman scattering efficiency (RSE), instead of the scattering cross-section,
since the first amount is volume independent. In a polar binary compound semiconductor,
the RSE per unit solid angle Ω can be defined as28

dS
dΩ

¼ ω3
SωL

c4
ℏ

2vcμωΓ

nS
nL

jeLRΓeSj2½NðωΓÞ þ 1�; (1)

where c is the speed of light in vacuum, μ the reduced mass of the ions, vc the volume of the unit
cell, ωL (ωS) the laser (scattering) angular frequency, nL (nS) the refractive index at the laser
(scattered) frequency, ωΓ the angular frequency of the corresponding phonon, eL (eS) the polari-
zation vector of the laser (scattered) light, and RΓ the Raman tensor corresponding to the Γ
phonon mode. The factor NðωΓÞ þ 1 has its origin in a quantum mechanical description of
the phonon field,28 and it corresponds to the phonon emission (Stokes shift). In the case of
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phonon absorption (anti-Stokes shift or anti-Stokes scattering), the factor is NðωΓÞ. In practice,
this factor is replaced by the Bose–Einstein distribution function, and this is the reason why at the
anti-Stokes frequency, the Raman scattering signal is very weak as compared to that appearing at
the Stokes shift, unless the temperature is very high. In a classical description, both Stokes and
anti-Stokes components have the same intensity. An exception is stimulated Raman scattering,
where phonons at the anti-Stokes frequency50 are excited. For Stokes shift, even if NðωΓÞ ∼ 0,
the factor 1 remains and the Stokes shift can be observed at any temperature. The relative inten-
sity of the Stokes/anti-Stokes Raman shift can be used to monitor the temperature.51

The Raman tensor is a second-order tensor, sometimes written as a third-order tensor (or even
as a fourth-order tensor52) contracted with the phonon polarization (Rk

ijq̂k, where q̂ is a unitary
vector in the direction of the phonon displacement). The form of the Raman tensor depends on
the symmetry of the crystal and the electron–phonon interaction, since in the Raman effect,
electrons play a crucial role as virtual intermediate states in the Raman process.31 For an
LO phonon propagating along x ([1,0,0]) direction, the Raman tensor for the optical modes
of a ZB crystal can be written in terms of the Raman polarizability α as

Rx
LO ¼

0
@ 0 0 0

0 0 α
0 α 0

1
A; (2)

and it is observable in the xðy; zÞx̄ scattering configuration written in Porto’s notation.53

Actually, we can write Rx
yz ¼ Rx

zy ¼ α. The remaining nonzero Raman tensor components are
Ry
xz ¼ Ry

zx ¼ Rz
xy ¼ Rz

yx ¼ α. We will come back to this point in Sec. 4. The Raman polariz-
ability has the expression54

α ¼ nLnS
2π

vc
ūΓ

1

ℏωL
WFIðωL; eL;ωS; eSÞ; (3)

where the relative phonon displacement ūΓ is defined by the expression

ū2Γ ¼ ℏvc
2VμωΓ

; (4)

(a) (b)

Fig. 2 (a) Cross-section of an objective (by courtesy of Carl Zeiss Microscopy, Germany).
1. Objective thread. 2. Stop face of the objective. 3. Spring system for the specimen-protection
mechanism. 4. to 7. Lens groups for the correction of image errors. 8. Correction collar for adapting
to deviating cover glass thicknesses or temperatures. 9. Front lens system. 10. Front lens holder.
(b) Schematic representation of a confocal setup, where we can observe the angle change inside
the sample due to the differences in refractive indices.
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and WFIðωL; eL;ωS; eSÞ is the amplitude probability of scattering of a phonon with wave num-
ber ωΓ. The remaining quantities have been defined already. The amplitude probability

WFI ¼
X
ν;ν 0

2
64
D
IjHeRjν

ED
νjHeLjν 0

ED
ν 0jHeRjF

E
ð†ωL − Eν þ iγνÞð†ωS − Eν 0 þ iγν 0 Þ

3
75; (5)

where the δðEF − EIÞ of the Fermi golden rule has already been taken into account. This ampli-
tude probability corresponds to the Feynmann diagram given in Fig. 3. The remaining five terms
or Feynmann diagrams31 are nonresonant, and they can be neglected. Eμ (Eν) and γμ (γν) are the
energy and broadening of the electronic states (which can be accessed in a time-resolved Raman
experiment55). If there are several initial and/or final states (as it is the case of several valence
bands in a ZB or WZ compound), we have to sum over I; F after squares WFI. The sum over
intermediate states is performed before squaring the expression. HeR and HeL are the electron-
radiation and electron(hole)-phonon Hamiltonians, which can be written in the second quanti-
zation formalism.28 The important point is the electron–phonon coupling constant, which
consists of two parts, one corresponding to the emission of the phonon by the electron
(see Feynmann diagram in Fig. 3) and a second corresponding to the emission of the phonon
by the hole. In ZB- (and WZ-) type materials, only the second option is nonzero, and the
electron–phonon coupling constant is

SKK−qνν 0 ðqÞ ¼ −
ūΓ

ffiffiffi
3

p

2a0
DhðrÞIνν 0 ðqÞ; (6)

where DhðrÞ is the deformation potential (DP) matrix as defined by Bir and Pikus.56 In the case
of the Fröhlich interaction,30 the basic expressions are the same; the only change is in the elec-
tron–phonon interaction Hamiltonian. Its coupling constant, in that case, is30

SKK−qνν 0 ðqÞ ¼ 1ffiffiffiffi
V

p C⋆
F

q
½Iνν 0 ð−qhÞ − Iνν 0 ðqeÞ�; (7)

where the Fröhlich constant

CF ¼ −ie

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πℏωΓ

�
1

ε∞
−

1

ε0

�s
(8)

and qζ ¼ qmζ∕ðme þmhÞ (ζ ¼ e; h). Since Fröhlich is intraband (there is also an interband
Fröhlich interaction with upper conduction bands—the electro-optic effect), we have to consider
both contributions, that of the electron and that of the hole. We cannot do the dipole approxi-
mation (κL ≈ κS ≈ 0) here, and the absolute value of q must be taken into account. The Raman
tensor for Fröhlich interaction is diagonal.

Fig. 3 Feynmann diagram corresponding to the Raman process described above.
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RF ¼

0
B@ αF 0 0

0 αF 0

0 0 αF

1
CA: (9)

It is interesting to realize that the DP is a local interaction, and thus it is related to the periodic
part of the Bloch function, while the Fröhlich interaction, only possible in polar materials, is a
long-range interaction related to the polarization charges in the medium, and only the envelope
of the Bloch function contributes to the matrix element.30 On the other hand, since both processes
are possible in the case of LO phonons, the amplitude probability must be added before squaring
it, and interference effects can appear29 when the Raman polarizabilities corresponding to defor-
mation potential (DP) and Fröhlich interaction are of the same order of magnitude, i.e., close to
an electronic transition, in resonance. This is the reason we usually say that the selection rules are
not completely fulfilled in resonance. During many years, the huge enhancement of Raman scat-
tering close to the gap could not be explained, and it was attributed to unknown values of one of
the constants that appear in the expression of RSE or to the existence of impurity-induced Raman
scattering.57 Finally, it was demonstrated that the consideration of excitons, instead of elec-
trons,31 as intermediate states in the Raman process could explain the absolute value of
Raman scattering in the case of deformation potential,28 Fröhlich interaction,30 and also the inter-
ference between both.29 The interference is produced due to the fact that we have to add the
probabilities before squaring (they correspond to different intermediate steps).

4 Raman Tensor and Raman Selection Rules

In Sec. 3, the Raman tensor of an LO phonon propagating along the [100] direction of the ZB
structure was defined in Eq. (2). We also defined the remaining components of the Raman tensor
using the conventional unitary vectors along x, y, and z. If one is interested in a different crystal
surface, a general method to proceed is to define the following three vectors:58

a1 ¼ ðh; k; lÞ; (10)

defining the crystal surface where the Miller indices are normalized (h2 þ k2 þ l2 ¼ 1). The two
perpendicular vectors forming a right-handed coordinate system are

a2 ¼ ð−k; h; 0Þ∕
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ k2

p
; a3 ¼ ð−hl;−kl; h2 þ k2Þ∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ k2

p
: (11)

It is also convenient to define the matrix formed by these three vectors written in rows.

A ¼

0
BBB@

h k l
−kffiffiffiffiffiffiffiffiffi
h2þk2

p hffiffiffiffiffiffiffiffiffi
h2þk2

p 0

−hlffiffiffiffiffiffiffiffiffi
h2þk2

p −klffiffiffiffiffiffiffiffiffi
h2þk2

p h2þk2ffiffiffiffiffiffiffiffiffi
h2þk2

p

1
CCCA: (12)

Following Fig. 4, the a1 axis will be always along the x direction, i.e., the incoming wave
vector of the light κL and outgoing κS are along a1. The phonon wave vector q, in backscattering
configuration, will also be directed along a1. Thus, the LO phonon will vibrate in the a1 direc-
tion, while the two TO phonons will vibrate along the a2 and a3 directions. The three vectors are
unitary. As commented in Sec. 3, the Raman intensity will be proportional to

jeLðRq̂ÞeSj2: (13)

In the case of an LO phonon, the Raman intensity will be proportional to

jeLRLOeSj2; (14)

while in the case of TO phonons, the intensity will be proportional to
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jeLRTO1
eSj2 þ jeLRTO2

eSj2: (15)

The reason of summing after squaring is that these are two different final states, but since they
appear at the same energy when looking at the Stokes shift, we have to add the intensities.
Of course, depending on the selection rules for a given surface, only one of them can contribute.
In the case of the ZB structure, it is very simple to calculate the resulting intensity for a ð11̄0Þ
surface, for instance. In that case,

A ¼

0
B@

1ffiffi
2

p − 1ffiffi
2

p 0
1ffiffi
2

p 1ffiffi
2

p 0

0 0 1

1
CA: (16)

If the polarization vectors eL and eS are both along the (110) direction, the transformed
vectors

e 0
L ¼ A†eL ¼ ð100Þ and e 0

S ¼ A†eS ¼ ð100Þ (17)

are along the x direction. The transformed Raman matrix R 0
i ¼ A†RiA.

R 0
i ¼

0
B@

0 0 1ffiffi
2

p

0 0 1ffiffi
2

p
1ffiffi
2

p 1ffiffi
2

p 0

1
CA; R 0

2 ¼

0
B@

0 0 1ffiffi
2

p

0 0 − 1ffiffi
2

p
1ffiffi
2

p − 1ffiffi
2

p 0

1
CA; R 0

3 ¼

0
B@ 1 0 0

0 −1 0

0 0 0

1
CA: (18)

The Raman matrices multiplied by the phonon polarization, R 0
i ai,

R 0
LO ¼

0
@ 0 0 0

0 0 1

0 1 0

1
A; R 0

TO1
¼
0
@ 0 0 1

0 0 0

1 0 0

1
A; R 0

TO2
¼
0
@ 1 0 0

0 −1 0

0 0 0

1
A (19)

in units of the Raman polarizability. The final result is je 0
LR

0
LOe

0
Sj2 ¼ 0, je 0

LR
0
TO1

e 0
Sj2 ¼ 0,

je 0
LR

0
TO2

e 0
Sj2 ¼ αTO. It is simple to check that, for eL ¼ eS ¼ ð1; 1; 1Þ∕ ffiffiffi

3
p

, the result is

Fig. 4 Fix axes system, where we have chosen z as the direction of the cylinder axis, x as the
direction of the light in backscattering configuration, and y as the perpendicular direction, forming a
right-handed system. The vectors eL and eS indicate the polarization of the incoming and scat-
tered light, respectively, and θ and ϕ the corresponding angles of rotation, with origin in the z axis
with counterclockwise rotation.
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je 0
LR

0
LOe

0
Sj2 ¼ 0, je 0

LR
0
TO1

e 0
Sj2 ¼ 8∕9αTO, and je 0

LR
0
TO2

e 0
Sj2 ¼ 4∕9αTO (the total contribution of

the TO is 4∕3αTO). The LO mode is forbidden for this configuration. These results are identical
as that given by Cardona.52

Although we have given a general procedure, we will pay particular attention to the case
where one of the axis is along the [111] direction, the NW growth direction or the cylinder
axis. The reason is that this is the equivalent to the [0001] direction of the WZ structure
and the results can somehow be compared. Figure 4 shows the coordinate system where the
NW axis is along the laboratory z direction. In that case, it is better to select A as

A ¼

0
BBB@

1ffiffi
2

p −1ffiffi
2

p 0
1ffiffi
6

p 1ffiffi
6

p −2ffiffi
6

p
1ffiffi
3

p 1ffiffi
3

p 1ffiffi
3

p

1
CCCA and A ¼

0
BBB@

1ffiffi
6

p 1ffiffi
6

p −2ffiffi
6

p
−1ffiffi
2

p 1ffiffi
2

p 0
1ffiffi
3

p 1ffiffi
3

p 1ffiffi
3

p

1
CCCA (20)

for ð11̄0Þ and ð112̄Þ surfaces, respectively. For a ð11̄0Þ surface, if eL ¼ eS ¼ ð1; 1;−2Þ∕ ffiffiffi
6

p
,

je 0
LR

0
TO1

e 0
Sj2 ¼ 2∕3αTO, je 0

LR
0
TO2

e 0
Sj2 ¼ 1∕3αTO, i.e., the contribution of the TO mode is

αTO, while the LO mode does not contribute. If eL ¼ eS ¼ ð1; 1;−2Þ∕ ffiffiffi
6

p
, the contribution

of je 0
LR

0
TO2

e 0
Sj2 ¼ 4∕3αTO. As is well known, the LO phonon is forbidden in the case of a

ð11̄0Þ surface in a ZB material. If eL ¼ eS ¼ ð1; 1; 0Þ∕ ffiffiffi
2

p
, je 0

LR
0
LOe

0
Sj2 ¼ 2∕3αLO and

je 0
LR

0
TO2

e 0
Sj2 ¼ 2∕3αTO. In the case where eL ¼ eS ¼ ð1; 1; 1Þ∕ ffiffiffi

3
p

, je 0
LR

0
TO2

e 0
Sj2 ¼ 4∕3αTO.

For crossed polarizations, je 0
LR

0
LOe

0
Sj2 ¼ 1∕3αLO.

Polar plots can be drawn by considering, in the case of ð11̄0Þ surfaces, in agreement with
Fig. 4,

eLðθÞ ¼
1ffiffiffi
3

p ð1; 1; 1Þ cos θ − 1ffiffiffi
6

p ð1; 1;−2Þ sin θ

eSðϕÞ ¼
1ffiffiffi
3

p ð1; 1; 1Þ cos ϕ −
1ffiffiffi
6

p ð1; 1;−2Þ sin ϕ: (21)

In the WZ structure, there are nine optical modes, but two of them are silent modes. The
seven Raman active optical modes are drawn in Fig. 5. The first mode vibrates along the z direc-
tion of the WZ structure. The Raman tensor is

RðA1Þ ¼
 a 0 0

0 a 0

0 0 b

!
: (22)

The 1-D A1 mode is a polar mode, with a different polarizability when propagating in the z
direction or in the xy plane. As stated before, group theory gives only the difference in anisotropy
(a and b polarizabilities), but does not consider the LO − TO splitting, which is due to the polar-
ity of the medium. The two-dimensional (2-D) E1 modes are also polar modes, with Raman
tensor

R½E1ðxÞ� ¼
0
@ 0 0 c

0 0 0

c 0 0

1
A; R½E1ðyÞ� ¼

0
@ 0 0 0

0 0 c
0 c 0

1
A: (23)

When propagating along x, E1ðxÞ will be LO, while it will be TO if it propagates along y.
There are actually two bidimensional E1 modes, but one of them corresponds to two acoustic
modes, the third acoustical mode being a 1-D A1 mode. There are also two nonpolar bidimen-
sional E2 modes, as can be observed in Fig. 5. Both modes actually mix, but the amplitude of the
heavier (lighter) atom dominates in the E2l (E2h) modes, vibrating at lower (higher) frequency.
The corresponding Raman tensor can be written as
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RðE2Þ ¼
 d d 0

d −d 0

0 0 0

!
: (24)

The WZ is an anisotropic structure. At this point, it is interesting to remark that there are two
kinds of anisotropic structures. In the first one, the crystal anisotropy dominates;59,60 actually εk
is very different from ε⊥. This is the case of most of the layered compounds,46 or nonpolar
compounds like graphite, but the most common case is that where the Coulomb interaction
dominates.35 This is the case of III–V compounds grown in the WZ structure. In recent
cases where typical ZB crystals grow in the WZ structure, the material anisotropy is unkonwn,
but, on one side, we know the LO − TO splitting, i.e., the intensity of the Coulomb interaction,
and on the other side, a small difference is expected in the crystal anisotropy since the structures
are identical until second neighbors. This is very important when we want to draw polar plots in
the case of WZ materials. When we rotate the polarization, the polar modes are mixed.

ω2
LO ¼ ω2

A1ðLOÞcos
2 θ þ ω2

E1ðLOÞsin
2 θ ω2

TO ¼ ω2
A1ðTOÞcos

2 θ þ ω2
E1ðTOÞsin

2 θ: (25)

Instead in a strongly anisotropic material, A1ðTOÞ and A1ðLOÞ [or E1ðTOÞ and E1ðLOÞ] mix.
Since we are interested in crystals with a small anisotropy, the Raman polarizabilities a and b
will be taken as equal to simplify the final expressions, i.e.,

RðA1Þ ≈
 a 0 0

0 a 0

0 0 a

!
: (26)

With this approximation, we can easily obtain the Raman selection rules in backscattering
from the lateral side of a single WZ-NW grown along the c-axis. Looking at the picture given by
Sander et al.,61 the x axis is perpendicular to the m-plane ð101̄0Þ [ð100Þ plane in three-index
notation], while the y axis corresponds to the a-plane ð112̄0Þ [(110) in three-index notation]. The
z axis is along c, the [0001] direction ([111] direction of the ZB).

The selection rules for a few standard configurations are summarized in Table 1. If one is
interested in polar plots, we have to calculate the components of the Raman tensor. Let us do, as
an example, the scattering configuration xðζðϕÞζðϕÞÞx̄ where ζ is in the zy plane. The vectors
e 0
L ¼ ð0; 0; 1Þ and e 0

S ¼ ð0;− sin ϕ; cos ϕÞ.
The Raman intensities will be, in the xðζζÞx̄ configuration,

jaTOj2cos2 ϕþ jcTOj2sin2 ϕ. (27)

We have summed the squares (without considering any interference) since they are different
phonon modes or different final states. However, we have to remember that they mix, and
give an intermediate frequency between the A1ðLOÞ and E1ðLOÞ or the A1ðTOÞ and the
E1ðTOÞ, in agreement with Eq. (25).

Fig. 5 Raman allowed phonon modes in wurtzite-type crystals. The A1 mode is 1-D while the E
modes are 2-D
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5 Theory of Polariton Modes in a Crystal

The number of phonon modes in a crystal depends on the number of atoms in the unit cell. As is
well known from a general course of solid-state physics, if a unit cell (primitive cell) has n atoms,
there are 3n − 3 optical modes. Depending on the complexity of the crystal, we can have from a
few to tens of optical modes. For instance, in silicon, there are three optical modes, as in ZB-type
materials; in WZ materials, there are nine optical modes (seven are Raman active), while in a
more complex material, like Bi2S3 and isostructural layered materials, there are 57 optical pho-
nons, 27 of them Raman active.62 In the case of an NW, there is no translational symmetry in the
plane perpendicular to the NWaxis. If the NW is very thin (a few nanometers of radius), we have
confined modes (see Sec. 7). With increasing NW radius increases, the confined phonon modes
overlap due to the finite linewidth, giving rise to an asymmetry at the low frequency region of the
LO or TO phonon peaks. NWs of the order of several tens of nanometers can be considered, for
most of the purposes, as a bulk material. Just as an example, in transport phonons can be treated
as bulk materials even for NW diameters down to 30 to 40 nm.63 The only difference will come
from the existence of a surface or an interface (core/shell NWs), giving rise to new phonon
modes, the so-called surface optical (SO) modes.

Let us start our discussion analyzing bulk phonons (i.e., there is no surface) in a solid. From
group theory (at q ¼ 0), there is no splitting of the optical modes; LO and TO modes have the
same energy. Actually, the LO − TO splitting is produced at finite q in polar semiconductors due
to the coupling of the phonon field with the electromagnetic field of the light (phonon–polar-
iton). In bulk materials, the polariton branches are derived from the solution of the Maxwell
equations inside the material and the coupling of electric field produced by the phonon displace-
ment with the electric field of the electromagnetic wave.64 From the LO to the TO frequencies,
there is a forbidden region where the electromagnetic wave cannot propagate in bulk materials
(the electromagnetic field is totally reflected). Actually, because of the losses (imaginary part of
the dielectric function), the reflectivity is not exactly one in this region.

Although the coupling between the ionic displacement in a polar crystal and the electric field
of the electromagnetic wave of the light is produced directly in the infrared region of the spec-
trum, it can be analyzed by Brillouin scattering,65 and this coupling is responsible for the exist-
ence of surface modes, as we will see later. In a Raman experiment in backscattering geometry,
q ≈ 4πnL∕λL, where nL and λL are the refractive index and wavelength of the laser light, respec-
tively. For the typical green line of an Ar laser (λL ¼ 514.5308 nm), q ≈ 0.08 nm−1. In a
Brillouin scattering experiment, the complete measurement range is below this amount.

If we consider the harmonic movement corresponding to a phonon traveling along the crys-
tal, the equation of motion will be that corresponding to the harmonic oscillator. On the other
hand, if there is an electromagnetic wave in the polar crystal, there is a polarization vector pro-
portional to the electric field, the proportionality constant being the electric susceptibility at a
microscopic scale. But these fields are coupled through the ionic movement. Let u ¼ uþ − u− be
the vector displacement between the positive and negative ion in a simple polar semiconductor
(as the ZB, for instance) and w ¼ ffiffiffiffiffiffiffiffiffiffi

μ∕vc
p

u, (μ∕vc is basically the density ρM, the mass density).

Table 1 Selection rules for backscattering configuration from the a plane (nanowire lying in a
surface) and c plane (nanowire perpendicular to the surface or a bunch of nanowires).

Scattering configuration Raman component

xðyyÞx̄ jaTOj2, jd j2

xðzzÞx̄ jaTOj2

xðyzÞx̄ jcTOj2

zðxxÞz̄ jaLOj2, jd j2

zðyyÞz̄ jaLOj2, jd j2

zðxyÞz̄ jd j2
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The equations to be solved in order to obtain both the electric polarization and the vector dis-
placement due to the existence of the external field E are

∂2w
∂t2

¼ −ω2w ¼ b11wþ b12E P ¼ b21wþ b22E: (28)

Equation (28) must fulfill at the same time the Maxwell equations, which we write in the
Gaussian system, for simplicity, and assume a plane wave solution eiðk·r−ωtÞ,

∇ · ðEþ 4πPÞ ¼ 0 ⇒ k · ðEþ 4πPÞ ¼ 0 ∇ · H ¼ 0 ⇒ k · H ¼ 0

∇ × E ¼ −
1

c
∂H
∂t

⇒ k × E ¼ ω

c
H ∇ ×H ¼ 1

c

�
∂E
∂t

þ 4π
∂P
∂t

�
⇒ −k ×H ¼ ω

c
ðEþ 4πPÞ:

(29)

Combining these equations, we arrive to the solution

E ¼ 4π
ðω2∕c2ÞP − ðk · PÞk

k2 − ω2∕c2
: (30)

At very high frequencies, the ionic movement cannot follow the electric field, only the elec-
trons, and we arrive to the trivial solution

P ¼ b22E ¼ ε∞ − 1

4π
E: (31)

On the other hand, uncoupled transverse phonons do not carry electric field and thus vibrate
at their resonant frequency ωTO, thus b11 ¼ −ω2

TO. Finally, in static conditions (∂2w∕∂t2 ¼ 0),
we obtain from the coupled Eq. (28)

P ¼
�
b12b21
−ω2

TO
þ ε∞ − 1

4π

�
E ¼ ε0 − 1

4π
E: (32)

The final expressions coupling the fields and atomic movement are

ðω2
TO − ω2Þw ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðε0 − ε∞Þ

4π
ω2
TO

r
E; (33)

P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðε0 − ε∞Þ

4π
ω2
TO

r
wþ ε∞ − 1

4π
E: (34)

Taking the displacement from Eq. (33), substituting in Eq. (34), and using Eq. (30) in the
particular case of transverse modes (P · k ¼ 0), we arrive at the following equation:

k2c2

ω2
¼ ε0ω

2
TO − ε∞ω

2

ω2
TO − ω2

: (35)

Using Eq. (35), we arrive at the solution

ω2 ¼ 1

2ε∞
ðω2

TOε0 þ c2k2Þ
"
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4ε∞ω
2
TOc

2k2

ðω2
TOε0 þ c2k2Þ2

s #
: (36)

The solution of Eq. (36) is given in Fig. 6 using the data of GaAs.42 At k ¼ 0, there are two
solutions obtained from the last equation taking the limit k → 0: ω ¼ ωLO and ω ¼ ðc∕ ffiffiffiffiffi

ε0
p Þk.

For large values of k, we obtain, taking the limit k → ∞, ω ¼ ωTO and ω ¼ ðc∕ ffiffiffiffiffiffi
ε∞

p Þk. The
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longitudinal solutions are obtained assuming P · k ¼ Pk ⇒ E ¼ −4πP ⇒ D ¼ 0. From the
coupled equations, ω ¼ ωLO. In Sec. 6.1, we will see how these equations are modified due
to the existence of a limiting surface in the solid. The value of the electric field can be recovered
from Eq. (28). In the case of TO modes, Eq. (28) gives E ¼ 0, and for LO modes,

E ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πω2

TO

�
1

ε∞
−

1

ε0

�s
w: (37)

We can follow the same strategy to analyze the polariton dispersion in a crystal with the WZ
structure. There are two modes, which are Raman and infrared active, A1 (a 1-D mode vibrating
along the c axis of the WZ structure) and E1 (a 2-D mode vibrating in the plane perpendicular to
the c axis). In a uniaxial crystal, the dielectric function is a tensor, isotropic in the plane
perpendicular to c. Let us write

ε ¼
 ε⊥ 0 0

0 ε⊥ 0

0 0 εk

!
: (38)

We will restrict ourselves to the case where the phonons propagate along the z axis and the x
axis (k is along z or x—the y direction is equivalent to x). If kkẑ, we have a A1ðLOÞ mode and
two degenerate E1ðTOÞ modes (vibration along x and y). If the phonons propagate along the x
(or y) direction, we will have the A1ðTOÞ mode vibrating along z and propagating along x and
two E1 modes, a mode vibrating along x and propagating along x, the E1ðLOÞ, and a second
mode vibrating along y and propagating along x, the E1ðTOÞ. Obviously, these two modes are
not degenerate in that case.

For the case where kkẑ, the electric field can be along the x axis (or y). In that case, Eq. (30)
becomes

Ex ¼ 4π
ω2Px

k2c2 − ω2
: (39)

Fig. 6 Lower and upper polariton branch in bulk GaAs calculated from Eq. (36) using the data of
GaAs.42
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The equations coupling the fields with the atomic movement are

ðω2
k − ω2Þwx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðεk0 − εk∞Þ

4π
ω2
k

s
Ex Px ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðεk0 − εk∞Þ

4π
ω2
k

s
wx þ

εk∞ − 1

4π
Ex: (40)

The same solution is obtained if the fields and ions vibrate in the y plane [exchanging x by y
in Eqs. (39) and (40)]. The solutions are the dispersion of the two E1ðTOÞ degenerate modes. By
solving the three equations, we arrive at a solution equivalent to that of Eq. (36), replacing ωTO

by ωk and ε by εk. The solution can be better written in an equivalent way as Eq. (30).

k2c2

ω2
¼

εk0ω
2
k − εk∞ω2

ω2
k − ω2

: (41)

The limits k → 0 and k → ∞ are easily extracted from these equations, ω ¼ ðc∕
ffiffiffiffiffi
εk0

q
Þk and

ω ¼ ðc∕
ffiffiffiffiffiffi
εk∞

q
Þk, respectively (see Fig. 7).

Here the electric field and the movement is along z; the solution is Ez ¼ −4πPz (D ¼ 0),

corresponding to the A1ðLOÞ with frequency ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
εk0∕ε

k
∞

q
ωk. These solutions are plotted in

Fig. 7 for ZnO. If k is along the x axis, the E1 mode propagating along the x direction will

be longitudinal, with frequency ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ε⊥0 ∕ε⊥∞

p
ω⊥. The dispersion of the modes propagating

along y and z are obtained by solving the equations

k2c2

ω2
¼ ε⊥0ω

2
⊥ − ε0ω

2

ω2
⊥ − ω2

; (42)

k2c2

ω2
¼

εk0ω
2
k − ε0ω

2

ω2
k − ω2

; (43)

respectively. The dispersion is shown in Fig. 7.
In the figures with the polariton branches, k has been written in wave numbers.
In the case of Raman scattering, the value of q is far away from the polariton region. In

backscattering configuration and assuming that the selection rules are fulfilled (that depends
on the cylinder radius), q ¼ kL − kS. For λL ¼ 514.53 nm, the laser frequency in cm−1 is
ωL ¼ 1∕λL ¼ 19;435.213 cm−1. The scattered frequency, for instance, for Si is ωS ¼
19;435.213 − 519.5 ¼ 19;383.263 cm−1 (515.909 nm). The value of q will be q ¼
2πnL∕λL þ 2πnS∕λS ≈ 4πnL∕λL ≈ 0.0855 nm−1 ¼ 855; 000 cm−1 (in the polariton region,
k ≤ 15;000 cm−1).

Fig. 7 Lower and upper polariton branch in bulk ZnO calculated from Eq. (36) using the data of
ZnO.66
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6 Surface Optical Modes

6.1 Surface Optical Modes Within the Polariton Description

In finite-size samples, there are additional conditions on the electric and the magnetic fields since
they must fulfill the boundary conditions at the sample surface. The existence of these boundary
conditions generates additional solutions in the polariton equations. In general, there is a com-
plete set of solutions ranging from below the TO to above the LO region, depending on the
geometry.

Let us consider a single cylindrical semiconductor NW of radius a, with a dielectric permit-
tivity εðωÞ, and an electromagnetic field with time dependence e−iωt. If the external medium has
a dielectric permittivity εM (in case of air or vacuum, εM ¼ 1), the electric and magnetic fields
outside and inside of the NW must fulfill the Helmholtz equations.�

∇2 þ εðωÞω
2

c2

�
E ¼ 0;

�
∇2 þ εðωÞω

2

c2

�
H ¼ 0 (44)

inside the material and �
∇2 þ εM

ω2

c2

�
E0 ¼ 0;

�
∇2 þ εM

ω2

c2

�
H0 ¼ 0 (45)

outside the material. The Helmholtz equation can be solved exactly in six coordinate systems,67

in particular, in cylindrical coordinates. In case of a hexagonal cross-section, the main conclu-
sions from this section will not vary, but the calculation of the electromagnetic field must be done
numerically due to the complexity of the boundary conditions.

Let us call k2 ¼ εðωÞω2∕c2 and k20 ¼ εMω
2∕c2. Equations (44), in cylindrical coordinates,

become, for a scalar function ψ ,�
∂2

∂ρ2
þ 1

ρ

∂
∂ρ

þ 1

ρ2
∂2

∂θ2
þ ∂2

∂z2
þ k2

�
ψ ¼ 0 (46)

inside the material. Outside, we have to replace k by k0. By assuming a solution of the type
RðρÞeinθeikzz, we arrive at the equation

x2
d2RðxÞ
dx2

þ dR
dx

þ ðx2 − n2ÞRðxÞ ¼ 0; (47)

where x2 ¼ β2ρ2 ≡ ðk2 − k2zÞρ2 [or x2 ¼ β20ρ
2 ≡ ðk20 − k20zÞρ2 outside the crystal] and whose sol-

utions are Bessel functions of first class [JnðβρÞ], second class [YnðβρÞ], also called Neumann
functions, and third class [Hð1Þ

n ðβρÞ or Hð2Þ
n ðβρÞ], or Hankel functions. Inside the cylinder, the

solution is of the type JnðβρÞ (analytical at the origin), and outside the cylinder, it is more con-
venient to take Hankel functions [Hð1Þ

n ðβ0ρÞ ¼ JnðβρÞ þ iYnðβ0ρÞ], i.e.,

ψðrÞ ¼ einθeikzz ×
�
AJnðβρÞ ρ ≤ a
BHnðβρÞ ρ ≥ a

; (48)

where we have removed the superindex of the Hankel function for clarity. The Hankel functions
can be expanded in plane waves.68

HnðρÞeinϕ ¼
Z þ∞

−∞
FnðβÞeiβρ cos ϕdβ: (49)

We are interested in the absorption (transmission, scattering) of a plane wave (laser beam) by a
semiconducting cylinder.

It is also possible to assume a conducting hollow of radius ρ0, ρ0 ≫ a. In that case, the
solution outside the cylinder will be Neumann functions. Once we have the solution for the
Helmholtz scalar equation, those for the vector equations are easily obtainable. For instance,
following Ref. 68, two vector solutions are
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M ¼ ∇ × uzψ ; N ¼ 1

β
∇ × ∇ × uzψ ; (50)

where ψ is the solution of the scalar equation. The modes cannot, in general, be split into trans-
versal electric and magnetic; they are mixed through the boundary conditions (due to the exist-
ence of a surface). In the general case, the eigenfrequencies are obtained by solving the
equation60�

1

βa
J 0
nðβaÞ

JnðβaÞ
−

1

β0a
H 0

nðβ0aÞ
Hnðβ0aÞ

��
k2

βa
J 0
nðβaÞ

JnðβaÞ
−

k20
β0a

H 0
nðβ0aÞ

Hnðβ0aÞ
�
¼
�
nkz
R2

�
1

β2
−

1

β20

��
2

: (51)

However, the most interesting case corresponds to the analysis of a single NW when the light
incides in the xy plane. In that case, kz ¼ k0z ¼ 0 and the scalar function does not depend on z.
Let us suppose that the electromagnetic wave has the electric field component along z. Since the
tangential component of E must be conserved, Ez ¼ E0z. From the Faraday equation,
∇ × E ¼ iωH.

1

ρ

∂Ez

∂θ
uρ −

∂Ez

∂ρ
uθ ¼ iωH: (52)

Since we are considering a nonmagnetic medium, both the normal and tangential compo-
nents of H will be continuous when crossing the surface. We arrive at the following three
equations corresponding to the continuity of Ez, Hθ, and Hρ:

AJnðkaÞ ¼ BHnðk0aÞ AJnðkaÞ ¼ BHnðk0aÞ AkJ 0ðkaÞ ¼ Bk0H 0ðkaÞ; (53)

where the first two equations are the same. By solving the equation for the coefficients A and B,ffiffiffiffiffiffiffiffiffiffi
εðωÞ
εM

s
J 0
nðkaÞ

H 0
nðk0aÞ

¼ JnðkaÞ
Hnðk0aÞ

: (54)

The modes solution of this equation are called E-polarized. On the other hand, if the magnetic
field has only a z component, we have to use the fourth Maxwell equation ∇ ×H ¼ −iωD,
where the displacement vector D ¼ εðωÞE inside the material and D ¼ εME outside. From
the continuity of the tangential component of H, the normal component of D, and the tangential
of E, we arrive at the equations

JnðkaÞ ¼ AHnðk0aÞ JnðkaÞ ¼ AHnðk0aÞ
k

εðωÞ J
0ðkaÞ ¼ A

k0
εM

H 0ðkaÞ: (55)

The transcendental equation for the H-polarized modes is

J 0
nðkaÞ

H 0
nðk0aÞ

¼
ffiffiffiffiffiffiffiffiffiffi
εðωÞ
εM

s
JnðkaÞ
Hnðk0aÞ

: (56)

These equations give a set of eigenvalues below the TO frequency, in the gap between the TO
and the LO, and above the LO. In the limit a → 0, the solutions are very simple. In the case of
E-polarized modes, for n ¼ 0, there is only one solution, ω ¼ ωTO, the bulk solution. When a
increases, a number of solutions appear below the TO region. For increasing a, there are sol-
utions in the gap and above the LO region. But for thin NWs, there is only one solution,
ω ¼ ωTO. In the case of H-polarized modes, there are no crossing points for n ¼ 0. In other
words, for n ¼ 0, there is only one solution, which corresponds to the bulk mode in the E-polar-
ized case. For n ¼ 1, and a → 0, the solution of Eq. (56) gives

ω2
SO ¼ ε0 þ εM

ε∞ þ εM
ω2
TO (57)

Cantarero: Review on Raman scattering in semiconductor nanowires: I. theory

Journal of Nanophotonics 071598-16 Vol. 7, 2013



corresponding to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εðωSOÞ∕εM

p ¼ i. Actually, in the range between ωTO and ωLO, where the
dielectric function is negative, the Bessel function JnðixÞ ¼ inInðxÞ; it can be written in
terms of the modified Bessel function. In Fig. 8, we have plot the dielectric permittivity for
GaP [ωTO ¼ 367 cm−1 and ωLO ¼ 403 cm−1, and ε∞ ¼ 9.075 (Ref. 69)] as a function of ω.
As must be expected, the dielectric function diverges at ω ¼ ωTO and becomes negative for ω >
ωTO until ω ¼ ωLO, where it becomes zero. Two dashed lines indicate the limits ε∞ and ε0
(calculated from the Lyddane–Sachs–Teller relations with the data supplied in Ref. 69). In
the inset, we show the region close to ωLO, where we can observe the surface optical
modes. The horizontal lines correspond to εðωSOÞ ¼ −1;−2 and −3, obtained from the tran-
scendental Eq. (56) taking εM ¼ 1; 2; 3. The vertical lines are the different frequencies,
which can be calculated accurately with Eq. (56). We can observe how the frequency of the
surface mode shifts down depending on the external or surrounding medium. From air to a
surrounding medium with εM ¼ 3, there is a shift of >5 cm−1.

We will compare this result with that given in Sec. 6.2, neglecting retardation. We have to
keep in mind that the first surface optical mode is obtained when the electric field is
perpendicular to the NW direction, and it corresponds to the n ¼ 1 solution of Eq. (56). In
the case n ¼ 0, there is no crossing point. In the case of E-polarized modes (n ¼ 0), we obtain
the bulk solution (ω ¼ ωTO) in small diameter NWs.

6.2 Surface Modes Within the Nonretarded Limit

The advantage of writing the Maxwell equations in the Gaussian system is that the nonretarded
limit is obtained simply with the limit c → ∞. In other words, the magnetic field contribution is
neglected. Since ∇ × E ¼ 0, we can write E ¼ −∇V. On the other hand, we have ∇ · D ¼ 0.
Inside the material, D ¼ εðωÞE, while outside the material D ¼ εME. In both cases, we can write
∇ · E ¼ ∇2V ¼ 0, and we arrive at the Laplace equation instead of the Helmholtz equation for
the surface modes.60

∇2Vðρ;ϕ; zÞ ¼
�
1

ρ

∂
∂ρ

�
ρ
∂
∂ρ

�
þ 1

ρ2
∂2

∂ϕ2
þ ∂2

∂z2

�
Vðρ;ϕ; zÞ ¼ 0; (58)

Fig. 8 Real part of the dielectric permittivity, as a function of ω in the region of interest between the
TO and LO. At the TO frequency, there is a divergence, and at ω∶LO, the dielectric function is zero.
Three optical surface frequencies corresponding to external media with εM ¼ 1 (air), εM ¼ 2, and
εM ¼ 3 with the data of GaP.69
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where Vðρ;ϕ; zÞ is the electrostatic potential. Actually, we are also assuming that ∇ · P ¼ 0, i.e.,
there are no volume polarization charges. In cylindrical coordinates, this equation can be solved
by separation of variables, considering

Vðρ;ϕ; zÞ ¼ RðρÞΦðϕÞeiqzz; (59)

where z is the axis of the cylinder and qz the phonon wave vector along the z direction.
Substituting into Eq. (58) and multiplying by ρ2,

ρ

R
∂
∂ρ

�
ρ
∂R
∂ρ

�
− ρ2q2z ¼ −

1

Φ
∂2Φ
∂ϕ2

¼ n2 (60)

by choosing Φ ¼ einϕ. Rewriting the equation in terms of x ¼ qzρ,

x2
∂2R
∂x2

þ x
∂R
∂x

− ðx2 þ n2ÞR ¼ 0; (61)

whose solutions are the modified Bessel functions InðxÞ and KnðxÞ. Since InðqzρÞ → ∞ when
ρ → ∞ and KnðqzρÞ → ∞ when ρ → 0, the potential has the solution

Vðρ;ϕ; zÞ ¼ einϕeiqzz ×
�
AInðqzρÞ ρ ≤ a
BKnðqzρÞ ρ ≥ a

; (62)

where A and B are constants indicating the strengths of the fields. Once we know the potential,
we can calculate the electric field, which in cylindrical coordinates is

E ¼ −
∂V
∂ρ

ρ̂ −
1

ρ

∂V
∂θ

θ̂ −
∂V
∂z

ẑ: (63)

At the surface of the cylinder (ρ ¼ a), the boundary conditions for the fields (Dρ, Eϕ, and Ez)
must be fulfilled. This requirement gives rise to the following two equations:

AεðωÞqzI 0nðqzaÞ ¼ BεMqzK 0
nðqzaÞ A

in

a
InðqzaÞ ¼ B

in

a
KnðqzaÞ

A
iqz
a

InðqzaÞ ¼ B
iqz
a

KnðqzaÞ:
(64)

The last two equations are identical. Solving the first two equations for A and B,

εðωÞ
εM

¼ K 0
nðqzaÞInðqzaÞ

KnðqzaÞI 0nðqzaÞ
≡ fnqz : (65)

Appealing to the expression for the dielectric function

εðωÞ ¼ ε∞ þ ε0 − ε∞
1 − ω2∕ω2

TO − iγω∕ωTO

(66)

and using Eq. (65), the following useful expression can be derived:

ω2
nqz

ω2
TO

¼ ε0 − fnqεM
ε∞ − fnqεM

; (67)

where n ¼ 0; 1; : : : correspond to the different surface modes. This expression has been written
in the literature in several ways, most commonly in terms of the plasma frequency. It should be
pointed out that one of the most common references on surface modes has an error; in Eq. (7.41)
of Sernelius’s book,70 the case n ¼ 0may correspond to εðωÞ → ∞ and not to 0 since the dielec-
tric function diverges at ω ¼ ωTO. On the other hand, since we have also found a mistake in a
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commonly used mathematical table,71 we write down here the expressions of the derivatives of In
and Kn, which are actually different.

I 0nðxÞ ¼
1

2
ðIn−1 þ Inþ1Þ; K 0

nðxÞ ¼ −
1

2
ðKn−1 þ Knþ1Þ: (68)

The correct expressions can be checked, for instance, in the book of Arfken et al.67 Taking the
limit a → 0, we obtain

ω2
SO ¼ ε0 þ εM

ε∞ þ εM
ω2
TO; (69)

the expression found in many text books.72 Actually, if qz → 0 (there is no propagation in the z
direction), we have the same result, which was previously found in the retarded limit. The sol-
ution corresponding to n ¼ 0 is the bulk solution (Ekẑ, corresponding to ω ¼ ωTO), while that
corresponding to n ¼ 1 is theH-polarized mode.60,73 In Fig. 9, we can see in the left panel (a) the
three first solutions of Eq. (67). For a fixed qz, as soon as a increases, we move from the bulk
solution (ω ¼ ωTO) of the cylinder to the solution of the slab (when the radius of the cylinder
a → ∞), and there is no difference between Ekẑ and E parallel to the other in plane coordinate.
For small radius (a → 0), the first surface mode corresponds to n ¼ 1 and it is H-polarized; the
electric field component will be along Eϕ. In Fig. 9, right panel, we have drawn the first surface
phonon solution, for εM ¼ 1, a material surrounded by air. Assuming, as an example,
λL ¼ 514.38 nm and q ¼ 0.0855 nm−1 (see end of Sec. 6), a NWof a ¼ 100 nm, and a numeri-
cal aperture of NA ¼ 0.9, following the deduction at the end of the Introduction, qza ≈ 0.02 to
0.03. Looking at Fig. 9 (right panel), the SO mode will be nearly at the same value as that
calculated by the usual expression. Actually, this calculation corresponds to the maximum
value of qz; thus the SO mode must be in between the value corresponding to qz ¼ 0 and
the maximum qz. In summary, we can neglect any deviation from Eq. (57). Obviously, qz is
conserved in an infinite cylinder and the Raman selection rules must be fulfilled.

7 Raman Scattering by Confined Optical Modes

The dielectric continuum approximation and the dispersive hydrodynamic model have been used
in the past to describe the optical confined modes in several kinds of heterostructures.74,75 They
predict different symmetry patterns for the electrostatic potential and the phonon displacement.
In an isotropic continuum model, the LO and TO phonons are decoupled in bulk materials,
while, as we have seen in Sec. 6, they couple in the general case due to the existence of a surface
that mixes them, and new modes related to the surface (surface optic modes) appear. The exist-
ence of SO modes can also be related to the cut-off in the Coulomb sum since the crystal is not

Fig. 9 (a) The solid line corresponds to the n ¼ 0mode, converging toωTO at a → 0 (E0). (b) Detail
of the dispersion of the first SO mode (n ¼ 1) using the experimental data of InAs.15 The calcu-
lation of qz is explained in the text. The corresponding energy for qza ≈ 0.02 to 0.03 gives a small
energy shift toward lower energy, although negligible.
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infinite. We have already written the basic equations needed for the study of the confined modes
in a cylindrical quantum wire; they are given by Eqs. (33) and (34). The behavior of these modes
(if decoupled) moving along the cylinder axis z is basically that of bulk modes due to the exist-
ence of translational symmetry. The phonons produce a deformation, which can be accounted for
by including the stress tensor in the basic polariton equations. In Sec. 6 we have neglected this
contribution. Actually, we have to modify Eq. (33) slightly to include the existence of local
strain. In Ref. 74, we started with the Lagrangian formalism, but, basically, we have to modify
Eq. (33) to the final form.

ðω2
TO − ω2Þu ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε0 − ε∞

4π
ρMω

2
TO

r
E − ∇ · σ; (70)

where we have assumed an e−iωt dependence and introduced ρM, the mass density, in order to
keep the definition of the mechanical stress tensor σ.

σij ¼
1

2

X
kl

λijkl

�
∂ul
∂xk

þ ∂uk
∂xl

�
: (71)

Equation (34) can be rewritten as

D ¼ Eþ 4πP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πðε0 − ε∞ÞρMω2

TO

q
u − ε∞∇V: (72)

Using the first Maxwell equation,

∇2V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πρMω

2
TO

�
ε0 − ε∞
ε∞

�s
∇ · u: (73)

The physical boundary conditions at the interface of the cylinder with the external medium
(with dielectric constant εM) must be

• continuity of the electrostatic potential at ρ ¼ a, a being the radius of the cylinder.
• continuity of the displacement vector u at the interface of the cylinder with the external

surface [uA ¼ uB in a core/shell NW and u ¼ 0 in a free-standing wire (FSW)].
• continuity of the normal component of the displacement (D · ρ̂) at the interface.
• continuity of the stress component along the interface (σ · ρ̂ ¼ 0 in a FSW).

On the other hand, we consider the dispersion of the LO and TO modes in the xy plane in the
simple way ω2 ¼ ω2

TO − β2TOQ
2 and ω2 ¼ ω2

LO − β2LOq
2, where the LO and TO modes are

related through the Lyddane–Sachs–Teller relations, ω2
LO ¼ ðε0∕ε∞Þω2

TO. The parameters
βTO and βLO indicate the curvature of the phonon branches, and the wavenumber has been
labeledQ or q to distinguish between the phonon branches. We will see later that they are related
to the sound velocity.

In order to simplify the description, we assume an isotropic elastic medium, with two elastic
constants (Lamé coefficients λ and μ). In terms of the conventional elastic compliances,

λ ¼ c12; μ ¼ c44 ≈
1

2
ðc11 − c12Þ: (74)

On the other hand, the transverse and longitudinal sound velocities in a solid are

c2T ¼ c44
ρM

; c2L ¼ c11
ρM

: (75)

In terms of the sound velocities,

μ ¼ ρMc2T ; λ ¼ ρMðc2L − 2c2TÞ: (76)

Introducing the Lamé coefficients into the stress tensor and replacing the sound velocities cL
and cT by the coefficients βL and βT , Eq. (70) can be written as
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ðω2 − ω2
TOÞu ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε0 − ε∞
4πρM

ω2
TO

r
∇V þ β2L∇ð∇ · uÞ − β2T∇ × ∇ × u; (77)

where we have made use of the identity ∇ × ∇ × u ¼ ∇ð∇ · uÞ − ∇2u. The solution of this
complicated equation was solved by assuming74

u ¼ ∇ψ þ ∇ × A; (78)

where the additional condition ∇ · A ¼ 0 was imposed.75 After a little algebra, we arrive at the
following set of four coupled partial derivative equations in cylindrical coordinates:

∇2

�
∇2Aþ ω2

TO − ω2

β2TO
A

�
¼ 0 ∇2

�
∇2ψ þ ω2

LO − ω2

β2LO
ψ

�
¼ 0: (79)

Assuming qz ¼ 0 [we are interested in the confined modes within the NWs (there is no
confinement along z)], uz ¼ 0, and we can assume A ¼ Azðρ; θÞẑ [and ψ ¼ ψðρ; θÞ]. The
displacement can be written as

uρ ¼
∂ψ
∂ρ

þ 1

ρ

∂Az

∂θ
; uθ ¼

1

ρ

∂ψ
∂θ

−
∂Az

∂ρ
: (80)

The four coupled systems of equations reduce to two coupled equations, with solutions

1

ρ

∂
∂ρ

�
ρ
∂Az

∂ρ

�
þ 1

ρ2
∂2Az

∂θ2
þ ω2

TO − ω2

β2TO
Az ¼ f1

1

ρ

∂
∂ρ

�
ρ
∂ψ
∂ρ

�
þ 1

ρ2
∂2ψ
∂θ2

þ ω2
LO − ω2

β2LO
ψ ¼ f2;

(81)

where both functions f1 and f2 are solutions of the Laplace equation. The phonon displacements
and the electrostatic potential are coupled through the two solutions.

The general solution of these equations have been already given in Ref. 75; here, we give
only the secular equation.

2nðn − 1Þ
�
βLO
βTO

�
2

R2tnðx; yÞfnþ2ðyÞ þ 2ny2fnþ2ðyÞ½xf 0
nðxÞ − fnðxÞ�

þ gnðxÞ½2yf 0
nðyÞ þ ðy2 − 2n2ÞfnðyÞ� ¼ 0;

(82)

where the arguments are

x2 ¼ ω2
LO − ω2

β2LO
a2; y2 ¼ ω2 − ω2

TO

β2TO
a2: (83)

The variable R is given by

R2 ¼ ω2
LO − ω2

TO

β2LO
a2 (84)

and the functions

gnðxÞ ¼
�
βLO
βTO

�
2

x2fnðxÞ − 2ðnþ 1Þxfnþ1ðxÞ (85)

and

tðx; yÞ ¼ ε∞gnðxÞfnðyÞ þ εMy2fnðyÞfnþ2ðyÞ
½ε∞ðβLO∕βTOÞ2x2 þ εMy2�fnþ2ðyÞ

: (86)

By solving these equations, we are able to find the complete set of eigenvalues for the differ-
ent values of ω. The eigenvectors are obtained by introducing the corresponding eigenvalues into
the expressions of the displacement and electrostatic potential.75 In previous works,74,75 we have
analyzed the case of an FSW, surrounded by air, and what we called a quantum wire, embedded
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in a different semiconductor, in that particular case, GaAlAs. In that case, there are two surface
and two boundary conditions. In the interface between the two semiconductors, the boundary
conditions are the same as that previously discussed; in particular, the normal component of the
stress tensor is continuous at the interface. In the external surface, the normal component of the
stress is zero. There are two kinds of modes: interface modes located at the interface between the
two semiconductors and a surface mode located at the external surface of the NW. Li has ana-
lyzed this last case of a core/shell NW for a GaAs/AlGaAs NW.76 The difficulty arises because in
the region of the shell, both the Bessel and Neumann functions are valid and the boundary con-
ditions become a little bit cumbersome. In the work of Li,76 he uses the first and second kind
Bessel functions. In this last paper, Li limits the study to the interface and surface mode.

Figure 10 shows the confined phonon modes as a function of the cylinder radius. In the upper
panel, the case where a GaAs NW is embedded in AlGaAs is shown for the case n ¼ 0, n ¼ 1,
and n ¼ 2. For n ¼ 0, for instance, for r0 ¼ 10 Å, there are only two confined modes in the
region between the LO and TO, but as soon as the radius increases, the number of modes
increases rapidly. For r0 ¼ 60 Å, there are already 16 modes in that region. We observe two
sets of curves, one converging to the bulk ωTO and a second one converging to the bulk
value of LO phonons ωLO. Starting in n ¼ 1, as we have commented in Sec. 6.2, the confine
modes mix with the surface modes. In Ref. 74, this anticrossing can be observed more clearly
since there are a few modes drawn and the decoupled modes have also been drawn. The cal-
culation, for the GaAs/AlGaAs NW, corresponds to the expression

ω2
F ¼ εa0 þ εb∞

εa∞ þ εb∞
ω2
TO; (87)

a and b being GaAs and AlGaAs (or vacuum in the case of an FSW). We called ωF the
frequency of the surface or interface mode because Fröhlich77 did the calculation for the
first time for the case of a dielectric sphere embedded in a second dielectric. The values obtained
were ℏωF ¼ 34.15 meV in the GaAs/AlGaAs NW and ℏωF ¼ 36.28 meV for a GaAs NW.

It is interesting to realize, also, that in the case of n ¼ 0, the surface modes do not appear, as
commented in Sec. 6.2. The reason is that, for n ¼ 0, the transcendent Eq. (82) decouples into
two equations

2f 0
0ðyÞ þ yf0ðyÞ ¼ 0; xf 0

0ðxÞ − f0ðxÞ ¼ 0 (88)

Fig. 10 Optical modes in cylindrical nanowires.
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and the LO and TO phonons do not mix as in the case of an infinite material. For n > 0, there is a
strong mixing of the LO and TO phonons, as can be observed, for instance, in the mode just
below the bulk TO phonon limit in the case of the FSW. For n > 0, we clearly observe the
surface optic phonon, which consists of a homogeneous polarization of the NW
[εðωÞ ¼ −εM]. At this frequency [that given by Eq. (87)], there is no difference between longi-
tudinal or transverse modes. Figure 11 shows the dispersion of a GaAs NW surrounded by
AlGaAs when n ¼ 1. We clearly see the surface mode, which appears at an intermediate fre-
quency due to the large value of the external dielectric constant (constant in the region of GaAs
phonons). We have also plotted the uncoupled solutions corresponding to bulk. We can see the
surface mode, interface mode in that case, as a new solution due to the mixing of the LO and TO
solutions, due to the existence of a surface or an interface.

In Ref. 75, the Fröhlich electron–phonon interaction Hamiltonian has been deduced for the
case of confined phonons, both for free-standing NWs and NWs embedded in a different mat-
erial (interface modes). Li76 has calculated the interface and surface modes for a core/shell NW
neglecting confinement effects. He has also obtained the Fröhlich electron–phonon Hamiltonian.

Since the number of confined modes increases drastically as soon as the NW radius increases,
we basically have a continuity of modes since they cannot be spectroscopically separated. At 6 or
7 nm, we already have a continuity of modes, which can be observed in Raman as a broadened
line. An example is the measurement reported by Zhang et al.78 in Ge NWs. They group the NWs
into a range of sizes and the Raman spectra are asymmetric, indicating either confinement or a
smaller signal coming from the smaller NWs. In their Fig. 5, they show the Raman spectra of a
set of NWs with diameters from 6 to 17 nm. Clearly, even with these diameters, wave vector is
conserved, otherwise the one-phonon density of states would be visible. A theoretical study on
nanoparticles, and also on 2-D and 1-D systems, was performed by Faraci et al.79 The theoretical
results show how a nanoparticle with a diameter of 10 nm has basically the same Raman spec-
trum as a 7-nm nanoparticle. In the case of 1.5- or 2-nm nanoparticles, the shape is asymmetric as
commented in the case of Ge NWs. The width is compared for the case of three-dimensional
(nanoparticles), 2-D, and 1D, which shows a smaller influence in the case of NWs (smaller shift)
than in the case of nanoparticles.

8 Antenna Effect

In bulk materials, the light penetrates into the semiconductor depending on the absorption coef-
ficient (or imaginary part of the dielectric function). The penetration depth in GaAs, close to the
E0 critical point, is ∼100 nm. In general, even if the NW diameter is <100 nm, a direct gap
semiconductor strongly absorbs the light above the band gap (i.e., in resonant conditions).

Fig. 11 Dispersion in a GaAs nanowire embedded into AlGaAs (Ref. 74) in the case n ¼ 1.
We have drawn the decoupled solutions, as explained in the text.
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However, the Raman intensity does not follow the classical selection rules in very thin NWs.
There is a typical cos2 θ dipole dependence, and the maximum Raman signal is obtained when
the polarization of the laser light is parallel to the NW axis. This behavior was observed for the
first time in 2000 in single-wall carbon nanotubes,80 and it was already predicted by Ajiki and
Ando in 1994.81 Although there are several observations of this phenomenon, denominated
antenna effect, in the literature in several semiconducting NWs, a couple of interesting
works should be mentioned. The first one is a review of Xiong et al.,80 where they summarize
a set of experimental works done on GaP NWs ranging from 50 to 200 nm in diameter. They
observe that the strong polarization disappears when the diameter d of the nanowire is
d ≥ λL∕4 ∼ 120 nm for the laser line used in the experiment (488 nm). The diameter is too
large to be related to electron confinement effects. For NWs of 105 nm in diameter, they observe
a cos2 θ behavior, while in a 160-nm wide NW, the emission has a multipolar character. In order
to explain the observed behavior, they used the discrete-dipole approximation80 to calculate the
light absorption. In this approximation, the NW volume is replaced by a set of dipoles, which
vibrate or interact with the incident electric field.

In Fig. 12, we reproduce the electric field maps of two NWs 200 and 500 nm in diameter. In
the NW with d ¼ 200 nm (left panel), the electric field penetrates into the nanowire in both
cases, when Ekẑ (up) and in a small amount when E ⊥ ẑ (down). In the case of a
d ¼ 50 nm NW, the electric field basically is zero inside the NW (panel right, down).

There is a second interesting paper,83 where they calculate the polarized-Rayleigh backscat-
tering signal instead of the complicated Raman signal, where we have to additionally take into
account the Raman selection rules. Although unfortunately there are no explicit calculations
(they refer to the original work of Rayleigh in 1881), they show that there are different reso-
nances as a function of the NW diameter and also show the polar plots for a set of NWs, ranging
from d ¼ 56 to 560 nm. The results are in close agreement with the experimental results of the
experiment performed by Xiong et al.82 Nevertheless, a complete quantum theoretical approach
is still needed.

9 Conclusions

In this review paper, we have described the main topics related to Raman scattering in semi-
conductor NWs. After a revision of Raman scattering efficiency, we have found the selection

Fig. 12 Electric field intensity maps around the cross-section of GaP nanowires calculated using
the discrete dipole approximation.82 The two upper panels correspond to E-polarization (electric
field along the wire), while the lower panels correspond to H-polarization (electric field
perpendicular to the wire axis). The wire diameter of the two panels at the left is 200 nm,
while that at the right is 50 nm.
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rules, in particular, for the two interesting cases of ZB and WZ materials. We have summarized
the theory of surface optical phonons, comparing the results including retardation effects and the
simple expression found in the literature where retardation is neglected. This expression has been
used incorrectly and many unphysical results have been obtained. We also studied the case of
phonon confinement and the appearance of the SO modes starting in the n ¼ 1 phonon; since in
the case of n ¼ 0we have shown that even in the presence of a surface, LO and TO modes do not
mix. Finally, we give a short description of the antenna effect, although more effort must be put
in this direction in order to give explicit analytical expressions.
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