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Abstract. The measurement of microwave electric-field (E-field) exposure is an ever-evolving
subject that has recently led the International Commission on Non-Ionizing Radiation Protection
to change its recommendations. With frequencies increasing toward terahertz (THz), stimulated
by 5G deployment, the measurement specifications reveal ever more demanding challenges in
terms of bandwidth (BW) and miniaturization. We propose a focus on minimally invasive E-field
sensors, which are crucial for the in situ and near-field characterization of E-fields both in harsh
environments such as plasmas and in the vicinity of emitters. We browse the large varieties of
measurement devices, among which the electro-optic (EO) probes stand out for their potential of
high BW up to THz, minimal invasiveness, and ability of vector measurements. We describe and
compare the three main categories of EO sensors, from bulk systems to nanoprobes. First, we
show how bulk-sensors have evolved toward attractive fibered systems that are advantageously
employed in plasmas, resonance magnetic imagings chambers or for radiation-pattern imaging
up to THz frequencies. Then we describe how the integration of waveguides helps to gain robust-
ness, lateral resolution, and sensitivity. The third part is dedicated to the ultra-miniaturization of
components allowing ultimate steps toward electromagnetic invisibility. This review aims at
pointing out the recent evolutions over the past 10 years, with a highlight on the specificities
of each photonic architecture. It also shows the way to future multi-physics and multi-arrays
smart sensing platforms. © The Authors. Published by SPIE under a Creative Commons Attribution
4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution
of the original publication, including its DOI. [DOI: 10.1117/1.JOM.1.2.020902]
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1 Introduction

Exposure to microwave E-fields has been dangerously increasing with the growing wireless tele-
communications, boosted by 5G deployment, the Internet of Things, and automotive vehicles.
Apart from telecommunications, numerous applications are also concerned, such as biomedical
with the expansion of e-health, ultra-high-field resonance magnetic imaging (RMI), plasmas, or
radiofrequency treatments. The E-field omnipresence and the rise in frequencies induce new
health and safety issues, which have pushed the International Commission on Non-Ionizing
Radiation Protection to update its exposure guidelines.1 In this context, E-field measurement
is more than ever required, be it for the evaluation of specific absorption rates (SARs), power
density,2,3 or for assessing the emitted radiating fields.4 In this paper, we focus on the evaluation of
E-fields emitted either in biomedical chambers such as magnetic resonance imaging (MRI) or
cold plasmas, or in free space due to antennas or electrical devices. These applications are faced
with ever-demanding specifications due to the frequencies increase toward terahertz (THz).

A first specification is to cover the entire emission spectrum, meaning more than 12 fre-
quency decades for THz-emitting devices. As a second specification, the sensor should tend
to minimal invasiveness, with a footprint far below the microwave wavelength. This feature
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is essential for plasma environments and near-field characterizations in the vicinity of emitters.
Consequently, the footprint requires downscaling to submilliter as frequencies increase to THz,
and metals should be avoided. On the other hand, the probe compactness should not impact
sensitivity, the latter being ideally below 10−2 Vm−1 Hz−1∕2. Third, the location of hot-spot
requires micrometric spatial resolution.

One objective of electric field characterization is to detect harmful exposures to people or
devices. Therefore, the fourth specification requires measuring the E-field vectors. Indeed, dam-
ages on living tissues and devices are known to depend on polarization.5,6 Linearity over large
dynamic ranges facilitates calibration and reliable measurements and is thereby also a specifi-
cation of interest. Finally, temperature stability stands as a must to avoid cumbersome and expen-
sive temperature-control systems.

Although several technologies are now well established for electric field detection, they are
struggling to meet these evolving requirements.

The most widely used E-field sensors are still metallic antennas. They are now remoted from
the measurement system by an optical link to avoid radiation and cable interference and cover up
to nine frequency decades.7 One way to perform this remote optical detection is via a photo-
conductive antenna.8 However, their intrinsic metallic composition and their centimeter footprint
remain prohibitive for non-perturbative measurements.

Active sensors, which modulate a laser diode or a light-emitting diode to convert the electric
signal into an optical signal, can provide GHz bandwidth (BW) with a millimeter footprint.8–10

But such active components are sensitive to magnetic-fields-induced perturbations. In addition,
the active probe generates significant E-field perturbation.

Optical nanoantennas have emerged over the past decade as excellent candidates for min-
imally invasive measurements,11–13 leading to the in vivo study of electro-physiological fields.
Their submicrometric footprint permits a long-term in vivo evaluation of the electric field impact
onto the organism with nanometric spatial resolution.12 However, photonic nanoantennas rely on
absorption measurements and cannot give direct information about the vectorial nature of fields.

Another approach based on an E-field-induced change of absorption but handling the problem
of vector and phase measurement relies on Rydberg atoms.14–16 Due to their very high principal
quantum number n, Rydberg atoms exhibit loosely bound valence electrons that can be easily
perturbed by external fields, enabling ultra-enhanced sensitivity17 down to 55 nV cm−1 Hz−1∕2

and absolute measurement of the E-fields.18 However, only narrow BW measurements (lower
than GHz) are easily feasible, and the method requires highly resolved spectroscopy.

Since the 1960s and the development of the first electro-optical (EO) E-field sensors,19,20

Pockels-based probes have experienced great success due to their intrinsic wide BW extending
from DC to several THz,21,22 their associated subpicosecond temporal resolution,23 and their
dielectric—and therefore minimally invasive—nature. By inducing a linear variation of the
refractive index as a function of electric field components, the Pockels effect offers the additional
advantage of enabling vector measurements, even in the most severe environments such as plas-
mas,24,25 lightning,26 gas insulation substations, or ultra-high voltage transmission towers.27

In the past, several comprehensive studies of Pockels-based probes have illustrated the attractive
properties of EO sensors.27–30 But although the last decade has witnessed substantial evolutions
in EO sensors, there is no review synthesising them. In this paper, we detail the developments in
EO-based E-field sensors performed over the last decade. The new photonic EO architectures are
highlighted and compared with the established EO configurations.

2 Bulk Electro-Optic Sensors

Pockels-based sensors, also called EO sensors, have been the object of growing attention for
more than four decades. In their initial stage,20 the Pockels-based sensors relied on separated
free-space optical elements, as represented in Fig. 1. In the classical configuration, which acts as
a polarization state modulator (PSM), an EO crystal is placed between two crossed polarizers,
and the linear polarization of the incident light is oriented 45 deg to the crystal eigenvectors. The
electrically induced linear birefringence generates a polarization change through the crystal,
which is converted into intensity modulation by the second polarizer. A quarter-wave plate
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is placed between the first polarizer and the EO crystal so that half of the light power passes
through the system in the absence of electric fields. The small-signal response shows hence a
linear sensitivity toward the E-field components [see Fig. 1(b)].30

When the optical probe is a pulse-delayed or chirped laser, the system can be used for EO
sampling, leading to the measurement/recording of electric fields with frequencies up to
230 THz.22 Another particularity of free-space EO systems is their ability to provide very high
spatial resolution by combining the proper choice of free-space imaging optics and an ultra-thin
EO crystal. For example, a resolution as high as λ∕600 was reached by Blanchard and Tanaka31

with a 1-μm-thick LiNbO3 crystal. Another advantage of the free-space Pockels systems is the
possibility to combine them with fast Mueller polarimetry. With this approach, Slikboer et al.32,33

recently showed the recovery of both the photoelastic and EO changes inside the sensing crystal,
to obtain thereby a simultaneous time-resolved measurement of temperature and electric fields
inside jet plasmas.

In the early 2000s, several institutions developed fibered versions of the PSM-based sen-
sors,29,30,34,35 evolving thereby toward easier-to-use and less-invasive plug-and-play probes.
In this case, a polarization-maintaining (PM) fiber is optically coupled to the EO crystal.
Depending on the crystal thickness t, the crystal is either directly fixed to the bare fiber if
t < 1 mm,36,37 or collimated with an intermediary GRIN fiber if t > 1 mm.25,27,35 The response
is usually collected by reflection with a mirror (or a reflective coating such as distributed Bragg
reflector38) on the crystal backside. The reflected optical signal is collected back into a second
fiber thanks to a slightly tilted incident angle to avoid return-light fluctuations. The quadrature
bias is achieved similarly as in free space by placing a quarter-wave plate at the system input.25,27

To cancel out the potential effects of polarization fluctuations inside the PM fiber, Togo et al.39

used a Faraday rotator within the optical head, deleting the phase difference between the light
transmitted on the fast and slow axes of the PM fiber. Compared to initial fibered systems,40 thin
polarizers (100 μm or less) can now be inserted inside the probe head to lower the impacts of
polarization instabilities.

Fibered EO-based bulk sensors are declined in various materials: an overview of their EO
sensitivity is provided in Refs. 34, 41, and 42. Organic crystals usually show the highest EO
coefficients, as for example, DAST with rEO ¼ 52 pm∕V,43 JRD1 with rEO ¼ 63 pm∕V,44
SEO125 with rEO ¼ 125 pm∕V,45 or AJTB203 chromophores with rEO ¼ 160 pm∕V.46

However, polymer-based E-field sensors still lack stability compared to their crystalline counter-
parts. LiNbO3 or LiTaO3 also exhibits a high r33 EO coefficient: r33_LiNbO3 ¼ 30.8 pm∕V at
632.8 nm.41 However, their temperature-dependent intrinsic birefringence requires stabilization
by an external servo-controlled system. Though potentially useful as a temperature sensor,40,47

this additional control system also implies additional complexity and cost for E-field detection.
Therefore, despite their lower EO efficiency, birefringent-free crystals such as BSO, ZnTe, or

Fig. 1 Basic configuration for electric field sensing with a bulk EO crystal: (a) schematic view of the
configuration and (b) EO response of the sensor. Iout is the output irradiance. E is the applied
electric field.
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CdTe are appreciated for realizing temperature-stabilized measurements.39,48,49 The issue of the
material’s electromagnetic impedance matching is addressed with a proper encapsulation using
matching layers.48 Another option to circumvent the impedance mismatch issue consists in
detecting the E-field component tangential to the probe. Thereby, the transmitted field is not
affected by the impedance mismatch due to the continuity equations. The technology is now
mature for commercialization, as evidenced by Refs. 28, 50, and 51, and has become a dedicated
technique in severe environments such as plasmas,24,25 lightnings,26 or MRI.52,53 PSM-based
sensors are also ever-attractive for the near-field characterization of antennas,38,48 due to their
minimal invasiveness associated with their wide BW and ability to perform vectorial measure-
ments. The far-field can be extracted from the near-field mapping of the amplitudes and phases
using the plane wave spectrum method, as illustrated in Fig. 2 for a quadridge horn antenna at a
frequency of 30 GHz. Compared to its metallic counterparts, the PSM-based EO probe releases
the need in cumbersome outdoor far-field installations or expensive anechoic chambers while
also covering more than nine frequency decades. The performances of the PSM-based sensor
used for Fig. 2 are shown in row #3 of Table 1. The probe is made of BSO; the BWextends from
30 Hz up to 60 GHz, with an E-field sensitivity of 40 mVm−1 Hz−1∕2 and a footprint of several
mm3. In summary, PSM-based sensors represent a good compromise between BW, footprint,

Fig. 2 (a) Far-field radiation pattern of a closed boundary quadridge antenna (QR18000 from
MVG) deduced from the near-field pattern. The EO probe is used to perform the near field analysis
in a plane at 2 mm from the antenna aperture. (b), (c) Near-field distribution in magnitude and
phase of the main polarization, measured with the EO probe. Each pixel of the vectorial mapping
is considered as secondary spherical source to calculate the far-field pattern.
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sensitivity, and feasibility. If combined in a two-port pigtailed system, the probe allows meas-
uring simultaneously two orthogonal components of the ambient E-field, with a temperature-
independent response, in real time.59

Nonetheless, the PSM architecture made of bulky assembled optical elements stands also as
an inconvenience for the probes’ robustness. Fabry–Perot-based sensors allow this issue to be
overcome by changing the polarization interferences into interferences between successive
beams reflected at the crystal’s facets, as schematically depicted in Fig. 3(a). This approach
releases the need for polarizers while also enhancing both sensitivity and longitudinal
resolution.36,60–62 As shown in Fig. 3(b), the operating point corresponds to the maximal slope
of the optical response, at 25% of the maximal reflection.62 Hence, the sensitivity depends on the
quality factor, itself linked to the reflective coating.61,62 With the quality factor of Q ¼ 1.1 × 105

demonstrated by Lee et al.61 for a 350-μm-long LiNbO3-based FP, a shot-noise-limited sensi-
tivity of 1.2 mVm−1 Hz−1∕2 is expected, as estimated from Ref. 62. By orienting light propa-
gation along the crystal’s optical axis, the EO response becomes polarization-independent,
enhancing the sensor stability toward fiber bending.63 A two probe-calibration steps associated
with a photonic heterodyne scheme was proposed in 2016 by Lee et al. to take benefit from two

Table 1 Comparison of optical sensors. The BW, sensitivity, maximal E -field, footprint, and vol-
ume resolution are given for different configurations (config.) and materials. CPI, common path
interferometer; MZI, Mach–Zehnder interferometer, seg., segmented electrodes, TFLN, thin film
LiNbO3; and PhC, photonic crystal. The footprint corresponds to width × thickness × length. The
volume resolution corresponds to the square of the lateral resolution times the longitudinal res-
olution. The lateral resolution is deduced from the optical beam cross section inside the EO crystal,
and the longitudinal resolution is estimated from the active length.

Reference Config., material BW
Sensitivity

(Vm−1 Hz−1∕2)
Emax
(kV/m) Footprint (mm3)

Volume
resolution
(mm3)

9 and 10 Modulated laser 500 kHz to 3 GHz 10 × 10−6 103 6.6 × 6.6 × 42 —

50 PSM and BSO 30 Hz to 60 GHz 40 × 10−3 104 π × ð5.5∕2Þ2 × 1 ≈ð0.1Þ2 × 1

54 CPI and LiNbO3 20 Hz to 10 MHz — 27 40 × 11.3 × 180 ≈ð0.01Þ2 × 18

55 MZI and LiNbO3 DC to 20 GHz 0.1 × 10−3 10 11 × 8 × 50 ≈ð0.01Þ2 × 30

56 Half-MZI seg.
and LiNbO3

10 kHz to 20 GHz 10 × 10−3 0.7 10 × 5 × 35 ≈ð0.01Þ2 × 12

57 μring and TFLN up to 100 GHz 500 × 10−3 — 5 × 0.5 × 15 ≈7 × 10−4 ×
ð0.1Þ52

58 PhC and LiNbO3 DC to 5.9 THz
(calculated)

32 — ð0.05Þ2 ×
7 × 10−4

ð0.014Þ2 ×
7 × 10−4

Fig. 3 Basic configuration of a Fabry–Perot-based EO sensor: (a) schematic view of the configu-
ration and (b) EO response of the sensor.
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probes ensuring respectively minimised invasiveness36 and optimized sensitivity, which allowed
the characterization of a W-band gyrotron at 95 GHz.37 However, the FP response is strongly
linked to the facets quality and alignment,30 and the phase dependency toward temperature also
contributes to the operating point instability, which hampers the production reproducibility of
FP-based sensors.

In 2012, Hisatake et al. proposed another non-polarimetric approach, based on measuring the
E-field directly from the phase-modulation sidebands.64 In Ref. 65, the sideband detection by
self-heterodyning led to the mapping of near-fields and propagating continuous THz fields
(125 GHz), with an SNR of 27 dB. In 2017, the same team added a second EO probe as a
reference for phase cancellation.43 However, the method remains limited to sub-GHz BWaround
the central frequency.66

In summary, bulk EO sensors are particularly attractive for E-field measurements in harsh
environments, as well as in the near vicinity of antennas. Their operability at several THz and
their resistance to high fields up to MV/m are two strong characteristics of this type of probe. Yet,
bulk probes require a compromise between sensitivity, stability, and lateral resolution. Hence, an
mm-long EO probe with a GRIN lens shows a 100-μm lateral resolution, as shown in Table 1.
Integrated EO sensors overcome this issue by confining light within micrometric cross sections,
without any additional focusing element. We propose to classify the integrated E-field EO probes
into two categories: waveguide-based probes and photonic probes, differentiated by the size of
their optical waveguides.

3 Waveguide-Based Electro-Optic Sensors

LiNbO3 integrated optics was initiated in the 1970s by Bell Labs67 and NTT Corporation,68 and
it soon opened the way to planar integrated interferometers.69 Among them, Mach–Zehnder
(MZ) and common path interferometer (CPI)27 stand out for their excellent linearity due to their
sinusoidal response, similar to PSM-based bulk sensors:

EQ-TARGET;temp:intralink-;e001;116;405Iout ¼
IS
2

�
1þ b · cos

�
φ0 þ

π · E
Eπ

��
; (1)

where Iout is the output irradiance, IS is a referenced fixed irradiance, b stands for extinction
ratio, Eπ is the so-called “half-wave electric field,” namely the electric field required to change
the output irradiance by half a period, E is the external electric field amplitude, and φ0 is the
phase bias, which is set to π∕2 to ensure linearity, similarly as in the bulk configuration
[see Fig. 1(b)].

When thermal stability is a critical issue, e.g., for voltage measurement or intense E-field
detection, the CPI configuration is preferred.54,70–72 The configuration is shown in Fig. 4(a): it

Fig. 4 Schematic views of integrated EO sensors: (a) CPI. The configuration is the same as in a
SPM-based sensor, expect that a waveguide is integrated in the EO crystal, which releases the
need of focusing element. With an adjusted length, the waveguide behaves as a quarter-wave-
plate. (b) Mach–Zenhder interferometer (MZI). The waveguide is usually polarizing (made by
proton-exchange), and it is butt-coupled to PM or single-mode (SM) fibers. Antennas are poten-
tially used to locally enhance the electric field.
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relies on a single channel waveguide, usually made by Ti-diffusion. The two interfering beams
correspond to the two quasi-TE and quasi-TM propagating polarizations. They are equally
excited by an input PM fiber with a neutral axis oriented at 45 deg to the (Ox) crystal axis and
recombined at the waveguide output by a polarizer, also oriented at 45 deg to the crystal axis.
Overall, this architecture represents the integrated version of the PSM-based sensors.

The phase bias φ0 ¼ 2π · Δn · L∕λ can be fixed easily by adjusting the waveguide length L.
CPIs are usually oriented along the (Oz) axis, which offers minimal birefringence Δn (between
10−5 and 10−4 RIU71), and thereby also minimal thermal fluctuations of φ0. To cancel the pre-
dominant contribution of the pyroelectric effect, a conductive and transparent layer such as tin
oxide ITO can be deposited on both Z waveguides facets and connected together.71 Phase bias
variations as low as 1.5 × 10−3 K−1 mm−1 are reported,72 which is the best thermal stability
reported to date in an integrated EO LiNbO3 sensor. Increased sensitivity can be achieved
by a minimally invasive antenna deposited on both sides of the waveguide,54 or by locally thin-
ning the substrate with a dicing saw as shown in Fig. 5. This latter approach, also described in
Ref. 73, spurs the EO overlap up to a factor 40 if the electrodes are also structured.

The EO efficiency of CPI-based sensors is governed either by r22 · no3 for Z-propagating
guides54 or by (r33 · ne3 to r13 · no3)/2 in the other cases,74,75 where no and ne are the extraor-
dinary and ordinary refractive indices. However, r13 and r22 are more than three times lower than
r33. As a consequence, CPIs give way to other configurations exploiting r33 when sensitivity
becomes a critical parameter, e.g., for electromagnetic compatibility or SAR tests.

In MZIs, the output irradiance expressed in Eq. (1) comes from the interference between the
two branches seen in Fig. 4(b): light enters the sensor via a single channel and is then split into
two arms through a Y junction. The two branches show a different EO sensitivity so that when
the two signals recombine through another Y junction into the output waveguide, their phase
difference is proportional to the external electric field.69,75–77 MZIs were the subject of intensive
efforts in the 1980s and 1990s for E-field detection, as detailed in Ref. 27. Now, the usual con-
figuration employs X-cut Y-propagative waveguides to benefit from the r33 coefficient while
avoiding the strong pyroelectric effect of the Z-cut substrates. The differentiated EO sensitivity
between the two arms is achieved either by reverse poling78 or by antennas.27,69,75,77,79,80 The
phase bias φo is set to π∕2 by a length difference of several micrometers between the two
arms and can be corrected by applying force81 or by laser writing79,82 in case of fabrication
imprecisions.

As the two interfering beams do not follow the same path, MZIs are very sensitive to external
fluctuations such as temperature. For example, recent measurements with proton-exchanged-
based polarized MZIs show a bias variation of 0.12 K−1 mm−1,79 two orders of magnitude
higher than in CPIs. Therefore, efforts since 2012 have mainly focused on bias stabilization.

Fig. 5 Fabrication of a locally thinned CPI-based sensor. The input and output fibers are polarized.
Locally, the waveguide is thinned down to micrometric or submicrometric thickness by precise
dicing. The EO overlap is thereby enhanced by locally confining the light, whereas the IL are
kept low.73 (Video 1, MP4, 56 MB [URL: https://doi.org/10.1117/1.JOM.1.2.020902.1]).
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Alternatively to wavelength tuning,83 a photovoltaic power-over-fiber module was developed by
SRICO Corp. to provide remote control of the bias.84 Another approach proposed by the same
group is to monitor the received optical power using the ratio of harmonics, which is operating-
point independent.85 As an alternative, the INAOE institute adds a second asymmetric MZI opti-
cal retarder to adjust the operating point.86 Thus various solutions are now available for bias
control but requiring an additional control system.

The most attractive features of LiNbO3 MZIs is their sensitivity, which adds to the use of r33
the benefit of low propagation losses (<0.1 dB∕cm):87 a centimetric active length has thereby no
impact on the insertion losses (IL), which is of crucial importance for improving the sensitivity.88

As an example, the SRICO MZI modulators show a sensitivity of 100 μVm−1 Hz−1∕2 due to a
total length of 5 cm with IL < 4.0 dB (see Table 1). Coplanar antennas also play a prominent role
in MZIs sensitivity.27 Among the numerous designs, segmented antennas80 distinguish them-
selves by their ability to provide impedance matching and wide BW. For example, Kumming
University has recently proposed a segmented tapered dipole antenna to achieve large BW with-
out compromise on sensitivity, where gradual changes in antennas size allow covering a 10-kHz
to 20-GHz BW with a sensitivity of 10 mVm−1 Hz−1∕2 and a total length of 3.5 cm56 (see
Table 1). Noteworthy, replacing the broadband antenna with resonant ones also opens the way
to advanced radio over fiber systems for wireless telecommunications.89 Despite their metallic
parts, MZIs with antenna can be used in harsh environments if properly encapsulated, as dem-
onstrated by Seikoh-Giken Corp.24

However, the centimeter footprint of the MZI is a hindrance to the minimally invasive mea-
surement of E-fields. Reflection-based configurations24,79 allow to address this issue and ease
manipulation: the MZ is half-cut and ends with a mirror so that only one fiber is required. But the
back light fluctuations result then in degraded sensitivity.79

Since 2010, the commercial introduction of LiNbO3 thin films (TFLN)57,90,91 based on ion
slicing technology92 has allowed a decisive step toward miniaturization. By confining light in
sub-μm-wide waveguides, TFLNs open the way to low-loss micrometer-scale curvature radius,
which drastically reduces the MZIs dimensions. They also help to diminish the gap between
antennas, which enhances the local E-field and decreases the active length, releasing thereby
the BW. Hence, LNTF-based MZ modulators are now available with BWs exceeding 60 GHz
and a millimeter footprint57,93,94 and should give rise to EO E-field probes with similar perfor-
mances. The still mitigated sensitivity (500 mVm−1 Hz−1∕2, see Table 1) should evolve with the
improvement of the IL, which are now of 8 dB.57,93

In summary, lithium niobate appears to be a material of choice for the production of wave-
guide-based probes due to its attractive EO coefficients and technological manufacturing matu-
rity. The revolution initiated in LN photonic integrated circuits thanks to ion slicing offers the
opportunity to reduce the size of LiNbO3 components down to millimeter sizes. This revolution
associated with the deployment of specific technologies such as epitaxy or precise dicing also
open up perspectives on varied materials, such as GaP,95 which allows large BW, BSO, which
provides excellent thermal stability,96 or BaTiO3, which ensures exceptional EO efficiency.97

The growing demand for minimized disturbance, high portability, and ultra-large BW pushes
now toward further miniaturization. It stimulates new photonic architectures with overall micro-
metric or submicrometric size.

4 Photonic EO Probes

The quest for ultra-compact EO probes requires compensating for the minimized active lengths
by architecture exalting sensitivity, whether through resonance, extreme EM confinement, or
slow light effects.

In the 2000s, resonant fibered structures with submillimetric sizes, such as EO racetrack
resonators98 or slabs,99 were directly coupled to the side of polished fibers to form slab-coupled
optical sensors, also opening the way to multi-axis sensing.100 However, a cm-long encapsulation
was necessary along the fiber to avoid bending in the detection zone.

By bonding submicrometer thin films of LiNbO3 to silicon microring resonators, the Ohio
State University demonstrated a more robust and compact approach, combining the advantage of
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silicon integrated optics in terms of cost and density of integration with the attracting EO proper-
ties of LiNbO3.

101 With a silicon microring radius as small as 20 μm and a quality factor of
Q ¼ 13;000, they achieved a probe with a sensitivity of 4.5 Vm−1 Hz−1∕2. Thus the longitudinal
resolution gains two orders of magnitude compared to CPIs or MZIs while ensuring also an
attractive sensitivity. And a further two-orders-of-magnitude improvement in the sensitivity
is expected for Q exceeding 106, which is now achievable.102,103 However, a giant Q also
decreases the BW due to the increased resonator lifetime: BW ¼ c∕ðλ · QÞ, where c is the light
velocity in vacuum. Thus probes with an above-million quality factor cannot exceed a GHz BW.

An alternative to resonators relies on exploiting ultra-high confinement of the electric field in
the sensing region through plasmonic architectures. If combined with polymers showing high
EO efficiencies and THz BW (see, for example, Refs. 104 and 105), this approach promises to
meet the challenge of both large BW and enhanced sensitivities. Hence, the ETH Institute and
Washington University proposed a bowtie antenna to play the role of a plasmonic phase modu-
lator as well as of an E-field enhancer.44 The 2.2 × 5 μm2 gap of the bowtie antenna was filled
with EO JRD1 in polymethyl methacrylate polymer, showing an EO efficiency of 170 pm∕V,
five times higher than in lithium niobate. Thereby, an interactive length of only 4 μm sufficed to
detect electric fields lower than 10 V∕m over a 1.25-THz BW. Afterward, to replace this free-
space setup with an on-chip detection system with a higher EO overlap, the same team proposed
a silicon-based MZI with two antenna-coupled plasmonic phase shifters on each branch, the
antenna being either a bowtie,106 or a multi-resonant antenna107 as represented in Fig. 6.

Fig. 6 On-chip terahertz detector.107 (a) The light pulses are coupled in and out on-chip silicon (Si)
waveguides by means of grating couplers. An organic EO material fills the two-phase shifters with
opposite polarity to enable push-pull operation. Scale bar is 10 μm. (b) False color scanning elec-
tron image of the fabricated multi-resonant THz detector. The antenna comprises of a high-
frequency (HF) antenna and a low-frequency (LF) antenna. (c) Close-up view of the HF-THz
antenna. Reproduced with permission from Refs. 107 and 108.
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Compared to bulk, the multi-resonant antenna provides a three-orders-of-magnitude enhance-
ment of the THz-fields with 2.5 THz BW. Hence, the 5-μm-long plasmonic zones show an EO
efficiency 35 times higher than a 1-mm-long bulk ZnTe crystal at 2.4 THz.107 However, the in/
output couplers are still non-adapted industrial applications, as can be judged by the overall
−31 dB losses.

Alternatively to plasmonic structures, photonic crystals (PhCs) can enhance EO interaction
by slow-light effects.109,110 In other words, the small active length is compensated by an
increased interaction time due to the excitation of a small group velocity Bloch mode. The gain
in EO efficiency as compared to a bulk crystal is proportional to f2, where f is the local field
factor of the optical wave:110,111

EQ-TARGET;temp:intralink-;e002;116;615f ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
vg;bulk
vg;PhC

r
; (2)

where vg;bulk and vg;PhC denoting the group velocities in the bulk EO material and in the
PhC, respectively.112 Thus in 2014, the Texas University showed that a 300-μm-long slot PhC-
waveguide filled with SE125 EO polymer (r33 ¼ 125 pm∕V) and surrounded with a bowtie
antenna was able to detect electric fields as small as 2.5 V∕m at 8.4 GHz.45 It represented a
gain of 14 in EO efficiency compared to the bulk EO polymer. However, fiber coupling was
achieved with gratings, which both hampered the robustness and spurred the optical losses.

A simple solution to integrate the PhC is to place it directly at the fiber output, as represented
in Fig. 7. Hence, Calero et al.58 developed an all-dielectric ultra-compact fibered EO sensor with
an active length of only 700 nm and a sensing area of 14 × 14 μm2, pushing the limits toward
EM invisibility.

The PhC-based sensor consists of an X-cut lithium niobate thin film, designed to exhibit a
Fano-resonance at 1575 nm thanks to an optimized biperiodic square lattice pattern.113 The
Fano-response of the reflected spectrum characterizes itself by an asymmetric resonance [see
Fig. 8(a), black curve], with a sharp spectral slope promoting slow light and high sensitivity
toward E-field induced refractive index variations. The agreement between the slope calcula-
tion (in red) and the measured EO strength (in blue) confirms the contribution of the Fano
resonance to the EO modulation. The extreme miniaturization combined with the absence
of electrodes benefits the BW, which theoretically extends up to 5.9 THz. In addition, the
lateral resolution is improved by one order of magnitude compared to the bulky EO sensors
[see Fig. 8(b)].

The performances of the sensor are summarized in Table 1 and compared with the other
configurations. The still weak sensitivity of 32 Vm−1 Hz−1∕2 will advantageously be improved

Fig. 7 Basic principle of PhC-based EO sensor: (a) sketch of the sensor showing the assembly
between the PhC and the PM fiber and (b) SEM view of the PhC-based sensor.
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in the future by adding an antenna, reducing the laser back reflection, or exploiting dark Fano
resonances.114

Overall, photonic probes appear as excellent candidates to move toward minimal invasive-
ness and THz frequency BW. Despite the still possible improvement in sensitivity, they are non-
etheless already attractive for application in high fields such as cold plasmas.

5 Conclusion

In summary, compared to their active optical counterparts (row #1, Table 1), EO probes show the
ability to cover wider BWs with lower induced perturbation. The EO probes differ from each
other by the nature of their material and their photonic architecture: their specificities are sum-
marized in Table 1. In bulk sensors, numerous varieties of materials are used, from cubic ferro-
electric materials privileging temperature–stability to polymers or anisotropic EO crystals for
sensitive applications. With their all-dielectric feature and their typical millimetric footprint, bulk
EO probes show a sensitivity of tens of mVm−1 Hz−1∕2 and a BW covering more than 10 fre-
quency decades. Due to their excellent technological maturity, their developments over the past
10 years have been mostly dedicated to specific applications like radiation pattern imaging or for
measuring E-fields in cold plasmas, RMI devices, or RF devices. In comparison, integrated EO
probes allow mono-block architectures with a smaller lateral resolution, down to the micrometer.
The material of choice is lithium niobate, with two privileged architectures: CPI-based sensors
for T-stabilized evaluations and MZIs for sensitive measurements down to 100 μVm−1 Hz−1∕2.
They also benefit from technological maturity and are used in harsh environments as well. The
recent development of LiNbO3 thin films opens the way to new integrated devices with smaller
waveguides allowing gain both in spatial resolution and BW. Finally, a new generation of pho-
tonic EO probes is appearing, revealing other attractive materials such as polymers with
enhanced EO coefficients. Photonic EO probes show the advantage of unprecedented spatial
longitudinal resolution, down to 700 nm for PhCs. Their ultra-small footprint allows the micro-
metric localization of hot spots and tends to EM invisibility.

These developments pave the way to dense arrays of 2D EO probes for real-time imaging,
pushing the limits one or two orders of magnitudes beyond the current set of 2 or 3 probes
dedicated to vector or isotropic measurements.115 The now-possible detection of faint terahertz
E-fields also contributes to new applications such as ultra-fast nanoscopy or quantum electro-
dynamics.116 The future tends to combine these EO heads with numerical approaches such as
deep learning to facilitate diagnosis or localization,117 or such as imaging reconstruction algo-
rithms combined with metasurfaces118 to allow single shot single sensor imaging.

Fig. 8 Performances of the LiNbO3 PhC-based sensor. (a) Theoretical reflected spectrum of the
Fano resonance (black) represented with his slope value (blue) and the EO-modulation strength in
function of the laser source wavelength (red). (b) Finite-element-method-computed electric field
distribution produced by the coplanar lines. The green and blue curves represent, respectively, the
Ex and Ez components along the x axis at a distance of 40 away from the lines. The associated
experimental results are developed in Ref. 58 and show excellent agreement with computation.
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