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Abstract. Daytime radiative cooling has attracted extensive research interest due to its potential
impact for energy sustainability. To achieve subambient radiative cooling during the daytime,
a white surface that strongly scatters incident solar light is normally desired. However, in many
practical applications (e.g., roofing materials and car coatings), colored surfaces are more popu-
lar. Because of this, there is a strong desire to develop colorful surfaces for radiative cooling.
We summarize the general design criteria of radiative cooling materials with different colors
and discuss the limitations in cooling performance. Major efforts on this specific topic are
reviewed with some suggested topics for future investigation. © 2021 Society of Photo-Optical
Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JPE.11.042107]
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1 Introduction

Cooling is a significant end-use of energy and a major driver of peak electricity demand.
According to the U.S. Department of Energy’s estimation, air conditioning consumes ∼15%
of the primary energy used by buildings in the United States.1 This percentage of electricity
consumption for cooling is much higher in tropical countries (e.g., 70% in Saudi Arabia2).
In North America areas, most roofs of houses are dark in color, which will introduce significant
solar heating to the living environment. Therefore, the roof is an important target to improve the
energy efficiency for building and house designs. Another major application of air conditioning
is in automobiles. Of the fuel used in vehicles,∼29% is used for cooling and 25% to 33% for heat
dissipation.3 In particular, during the summer, the temperature inside a car parked in direct sun-
light can reach 50°C, which can result in serious injuries or even deaths to humans and pets who
are in the vehicle.4 Therefore, a passive cooling strategy that cools without electricity could
significantly impact global energy consumption, as well as human (especially infant) and pet
safety.

Radiative cooling is a promising candidate to meet this cooling need for overheated spaces
under direct Sun illumination.5 The Earth’s atmosphere has a transparency window between 8
and 13 μm for electromagnetic waves, corresponding to the peak thermal radiation spectral
range of terrestrial objects at typical ambient temperatures (e.g. ∼20°C to 45°C over summertime
in tropical areas). This transparency window is a cooling channel for thermal emission through
which a thermal body on the Earth’s surface can radiate heat into the cold outer space. In the past
decade, radiative cooling technologies received emerging interest due to their cooling effect with
no consumption of electricity.5–8 However, most conventional radiation cooling technologies
work at night only since solar heating is dominant during the day.9–15 Since the first experimental
demonstration of daytime radiative cooling disclosed by Raman et al.,16 it has emerged as a
new energy sustainability research topic for improved heating, ventilation, and air conditioning
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(HVAC) applications. Experimental daytime radiative cooling strategies were demonstrated with
a reported cooling power of ∼100 W∕m2 during a sunny day with access to the clear sky.17–24 In
this mini-review, we discuss the design criteria to integrate radiative cooling functionalities with
colorful materials (e.g., roofing materials and paint/coatings of automobiles) and summarize the
research progress along this particular research direction. In Sec. 2, we summarize the general
design criteria of radiative cooling. In Sec. 3, we discuss the current colorant products and reveal
the potential for further improvement. Then in Secs. 4 and 5, we review the research progress of
radiative cooling with colorful surfaces. We conclude this review with a brief perspective for
future research.

2 Criteria of Spectral Selectivity for Radiative Cooling

The thermal management of outdoor infrastructures, such as building envelopes, is essential to
reduce the energy consumption by HVAC applications. Functional cooling roofs25–28 and smart
windows29–38 have been exploited for decades. The major aim is to reduce the heat gain during
daytime and cool the space more rapidly after sunset. By manipulating the spectral selectivity of
the material, one could effectively control the thermal loads of exterior surfaces. For example, in
tropical areas, light-colored roofs are usually preferred to minimize solar absorption [Fig. 1(a)].
With this well-established concept, people developed different types of white cooling roof to
improve indoor comfort and save on energy consumed by air conditioning.39,40 However, in
cooler regions with seasonal conditions, dark roofs are more popular [Fig. 1(b)]. As a result,
solar heating is a major thermal load during the summer time. In addition, multiple color coatings
are one of the most important options for automobiles to meet personal preferences [Fig. 1(c)],
which is less dependent on energy saving or other technical considerations. These colored
surfaces will absorb sunlight efficiently and result in a temperature increase when under direct
sunlight. Therefore, materials that can simultaneously exhibit colors and lower the surface tem-
perature are highly desired. In past decades, numerous studies were conducted to develop col-
ored paints with minimized solar absorption.41,42 However, less attention was paid to the infrared
features of these paints. To demonstrate the potential of radiative cooling for these applications, it
is necessary to understand the actual optical absorption and thermal emission features of these
existing products.

The key to radiative cooling depends on an engineered spectral selectivity. By considering
both radiative and non-radiative heat fluxes of an emitter, the net thermal load of an emitter Pnet

can be calculated by

Fig. 1 Spectral selectivity for radiative cooling. (a) Screenshot of a representative community
with white roofs (Google map at coordinate: 28.506, −81.411). (b) Photos of colorful roofs and
(c) automobiles. (d) Schematic of energy flow of terrestrial objects. (e) Spectral distribution of solar
irradiance and (f) atmospheric radiance.
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EQ-TARGET;temp:intralink-;e001;116;735Pnet ¼ Prad − Patm − PSun − Pnon-rad; (1)

where Prad is the outgoing thermal radiation, Patm is the absorbed atmospheric thermal radiation,
PSun is the absorbed solar irradiance, and Pnon-rad is the non-radiative heat loss. As illustrated in
Fig. 1(d), the general criteria are (1) minimizing the absorbed solar irradiance [PSun in the wave-
length range below 2.5 μm; see Fig. 1(e)] while (2) maximizing the outgoing thermal radiation
[Prad, especially within the atmospheric transparency window of 8 to 13 μm; see Fig. 1(f)] and
atmospheric thermal radiation (Patm). Following these design criteria, considerable research has
been reported for daytime radiative cooling. For instance, Hsu et al.43 reported an infrared-trans-
parent textile that allows thermal radiation from human skin to transmit through, resulting in
colder skin temperature. Zhai et al.44 demonstrated a nanoparticle embedded polymer film,
which first reported a scalable daytime radiative cooling coating. By introducing hierarchical
porous structure into polymer film, Mandal et al.45 also reported an efficient daytime radiative
cooling material with critical spectra selectivity. However, due to strong scattering and diffrac-
tion within solar spectral range, most radiative cooling materials are white in color.46–62 For a
colored radiative cooling structure, absorption in the visible range is inevitable. Therefore, one
needs to consider the balance between solar heating and thermal radiation for colored radiative
cooling materials. In the following sections, we will discuss the special design criteria for colored
emitters and review the research progress along this particular path.

3 Commercial Colorful Paints/Coatings

As a mature market, paints and pigments have been widely used in industrial and civil appli-
cations. These commercial products are mixtures of multiple chemicals,63,64 which are mostly
inexpensive, durable, and scalable, and have been massively deployed in surfaces such as build-
ing envelopes, automobile coatings, clothes, and billboards. In recently reported literature for
radiative cooling, researchers employed selected commercially available paints as the control to
compare with their proposed cooling materials and structures.65–68 In order to reveal the potential
of colored radiative cooling, we first discuss the spectral characteristics of selected commercial
products to reveal the radiative cooling potential.

3.1 Roofing Materials

Colorful roofing materials are major solar heating loads to residential houses. Better roofing
materials with minimum heating effects are highly desired. The U.S. Environmental Protec-
tion Agency predicts an electricity savings of 10% if colored roofs can be replaced by white
ones.69 Recently, a roof-cooling project performed by Lawrence Berkeley National Laboratory
reported color-matched cool roof tiles with a solar reflectance of over 40%, while showing iden-
tical color to regular painted roofs [Fig. 2(a)].70 In particular, the cool roof tiles exhibit over 70%
reflectance in near-infrared (NIR) range. When implemented in tropical or hot-weather areas
such as California, the peak temperature of these cool roof tiles is expected to be ∼10 K lower
than regular roofs with similar colors, corresponding to the reduction of ∼7% to 15% in annual
cooling power consumption in a regular residential house.70 However, in this report, the actual
radiative cooling contribution was not revealed. Here we selected six metal roof samples with
different colors [see the upper panel in Fig. 2(b), samples from Drexel Metals Inc.71] to measure
their optical and thermal spectra. One can see that all samples show strong thermal emission in
the spectral range of 8 to 13 μm [Fig. 2(b)]. Therefore, these commercial coatings already meet
the requirement for radiative cooling. However, in the visible range, their absorption spectra are
mostly broadband, resulting in a strong solar heating effect. Under direct sunlight illumination,
their surface temperatures are usually very high (much higher than the ambient temperature).

3.2 Automobile Coatings

Another popular color painting is automobile coating. Cooling is highly desired, especially when
the air conditioning system of the automobile is not operating in an open parking lot under direct
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sunlight. Here we selected seven commercial color cards (2001 Toyota/Lexus exterior colors)
and measured their optical absorption and thermal emission properties [Fig. 2(c)]. Similar to the
colored roofing samples, the automobile coatings show broadband absorption in visible range as
well, which intuitively lead to a strong solar heating effect.

To address this solar heating issue, one needs to have better thermal management while pre-
serving the color. By examining the absorbed solar powers in different regions, one can effec-
tively minimize the solar heating while preserving its colorful appearance. The absorbed solar
power of a surface can be described by

EQ-TARGET;temp:intralink-;e002;116;293PSun ¼
Z

0.38 μm

0.28 μm
IAM1.5ðλÞεðλÞdλþ

Z
0.7 μm

0.38 μm
IAM1.5ðλÞεðλÞdλþ

Z
2.5 μm

0.7 μm
IAM1.5ðλÞεðλÞdλ; (2)

where IAM1.5ðλÞ represents the solar spectral irradiance at air mass 1.5, and εðλÞ is the emissivity
spectrum of the surface. Considering ultraviolet (UV: 0.28 to 0.38 μm), visible (0.38 to 0.7 μm),
and NIR (0.7 to 2.5 μm) regions of the solar spectrum, the irradiance powers in each region
correspond to 6.4%, 45.5%, and 48.1% of the total power, respectively. Since the color percep-
tion range for human eyes is mainly in the visible range,72 the thermal loads of two emitters with
identical color can be different under solar illumination. In addition, even for an identical color,
different color formation mechanisms can also result in different thermal loads. For instance, Li
et al.66 analytically discussed radiative cooling structures for two different situations. As shown
in Fig. 2(d), the “cold” emitter should only absorb a narrow band of light in the visible range,
resulting in a color that can be described by the cyan, magenta, and yellow colorimetric chart.73 It
should also reflect other visible and NIR wavelengths to minimize the solar heating effect. On the
other hand, in the long-wavelength infrared (LWIR) range, the optimized cold emitter should be
strongly emissive to enable radiative cooling. In contrast, the “hot” emitter absorbs a broadband
light in the visible range and reflects a relatively narrow band of light to create colors described
by the red, green, and blue (RGB) colorimetric chart. As shown by the red dashed line in

Fig. 2 Spectral features of commercial car paints and roofing materials. (a) Photos and solar spec-
trum reflectance of the cool roofing materials; (b) photos and absorption spectrum of the metal
roofs; (c) photos and absorption spectrum of the Toyota automobile color cards. (d) Spectrum
of two surfaces with the same color but different thermal responses. (a) Reprinted with permission
from Lawrence Berkeley National Laboratory and (d) reprinted with permission from Springer
Nature.
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Fig. 2(d), it has high absorption in NIR range, and low emission in LWIR range. Consequently,
although these two emitters show similar colors, the thermal response of them under sunlight is
drastically different, i.e., the cold emitter can realize a subambient cooling effect while the hot
emitter cannot. Following this concept, one could design the colored emitter to obtain optimized
cooling performance under different environmental conditions as will be summarized in the next
section.

4 Integration of Radiative Cooling Materials with Existing Colorants

4.1 Integration with Porous Polymers

The colored radiative cooling material inevitably increases solar heating and degrades the
cooling power. As a result, subambient cooling is more challenging to realize using colored
materials. Instead, the cooling effect of these colored materials is usually compared to their coun-
terparts that have not been engineered with thermal emission in mind. In particular, structures
that can dynamically switch between opaque and colored modes offer a better solution for future
smart building envelope materials. Mandal et al.74 reported porous polymer coatings for dynamic
thermal regulation. By wetting the porous polymers with refractive-index-matched fluids, the
polymer coatings are able to switch from the scattering mode to the transparent mode, corre-
sponding to a transmittance change by 74%, as shown in Figs. 3(a) and 3(b). In addition, when
coupled with a colored background, the coating can dynamically change from white to different
colors [Fig. 3(c)], indicating its tunability between cooling and colored modes. More recently,
another dynamic switchable coating was also demonstrated by introducing controllable cavita-
tion in PDMS thin films [Fig. 3(d)].75 By applying a mechanical force on the surface, the micro-
cavity can be reversibly dilated and sealed, resulting in a transition between opaque and
transparent modes. Similar to Ref. 74, this transparent mode was coupled with a colored back-
ground to realize coloration.

4.2 Integration with Pigments

Integrating pigments into fabric materials has proved effective for colorful radiative cooling,
in particular with human body thermal management. Conventional colored fabrics are highly

Fig. 3 Colorful radiative cooling integrated with pigments/dyes. (a) Photo with representation of
the porous PVDF in dry and wet modes; (b) measured transmittance spectrum of the porous PVDF
in wet and dry modes; (c) photos of porous PVDF coupled with colored background. (d) Photos of
porous PDMS in opaque mode and transparent mode. (e) Schematic of colored fabric. (f) Photos
and infrared images of bilayer colorful coating. (g) Schematic of a photoluminescence emitter for
radiative cooling; (h) photo of photoluminescence cooling pixels. (a)–(c) Reprinted with permission
from Elsevier B.V., (d) reprinted with permission from Wiley, (e) reprinted with permission from
Elsevier B.V., (f) reprinted with permission from American Association for the Advancement of
Science, and (g) and (h) reprinted with permission from American Chemical Society.
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absorptive in the infrared spectral region, which hinders the heat dissipation of skin. Cai et al.76

provided a solution to modulate both visible and infrared spectra of fabric materials. As shown in
Fig. 3(e), by mixing infrared-transparent pigments into polyethylene fabrics, the obtained
composite exhibits high transmittance in the infrared range, while maintaining a vivid coloration.
Consequently, this textile allows efficient thermal radiation from human skin, therefore reducing
the temperature. Although this colored fabric does not emit heat intrinsically, it can be employed
as an efficient scattering film to reduce the incident solar irradiance.43,50 In addition, direct inte-
gration of colored pigments with radiative cooling material was also explored by fully exploiting
the penetration depth of light within different wavelength ranges.65 As shown in Fig. 3(f), the
researchers proposed a bilayer colored painting by coating the NIR reflective substrate (PVDF or
TiO2 coating) with a thin, colored layer. As a result, the overall absorption in NIR is reduced
significantly when the thickness of the color coating is controlled within tens to hundreds of
micrometers. Therefore, a colder temperature can be obtained under direct sunlight illumination
compared with a single-layered color paint.

4.3 Integration with Photoluminescence

Another method to promote colored radiative cooling is integrating light emitting materials
with thermal emission films.77–79 Normally, the colored paints or pigments will inevitably result
in solar heating. However, light-emitting materials, such as photoluminescent dyes, can partially
convert the UV portion of solar irradiance into emitted light, hence slightly reducing the
solar-heat conversion. With optimized structures, Jeon et al.78 reported colored emitters that can
realize subambient cooling performance under 800 W∕m2 solar illumination. Intriguingly, these
photoluminescent films can produce vivid colors in dark environments at night [Figs. 3(g)
and 3(h)].

In short, this section summarized radiative cooling progresses using colored absorbing
materials. To minimize the solar absorption, the emitter needs to be highly reflective in the vis-
ible and NIR range. Considering the radiative cooling power of ∼100 W∕m2 that can be
obtained by white emitters and systems, the optical absorption of the colored materials cannot
exceed 10% of the regular one Sun solar energy (∼1000 W∕m2). Therefore, this type of colored
radiative cooling materials requires an even more stringent spectral selectivity than white cooling
materials.80–90 On the other hand, due to this inevitable optical absorption, the cooling power of
these colored absorbing surfaces is generally lower than that obtained by white materials. Next,
we will discuss another strategy to enable colorful radiative cooling surfaces with structural
colors.

5 Structural Colored Radiative Cooling Materials

Photonic structural colors received extensive interests in recent decades due to their unique col-
oration mechanism that is different from conventional pigments.91–100 Intriguingly, the color of
photonic structures can be designed using engineered subwavelength features to minimize the
solar heating effect. For instance, owing to controlled thin film interference (e.g., Fabry–Pérot
interference), layered photonic structures can generate designated color within the full visible
range. Li et al.66 established a concept of photonic thermal management by fully exploiting the
constructive interference to realize cold and hot emitters using different multilayered structures
[Fig. 4(a)]. As shown in Fig. 4(b), although both structures have similar absorption features in
the visible domain, their absorption in NIR and LWIR ranges are drastically different [Fig. 4(c)]:
the total thermal loads of the cold structure and hot structure under one Sun illumination are 716
and 230 W∕m2, respectively. The different thermal loads of these two materials resulted in dras-
tically different temperatures when placed under direct sunlight. Other strategies include silicon
nanowire arrays on Ag film [Fig. 4(d)],94 metal–insulator–metal cavity structures [Fig. 4(e)],97

engineered multilayered films [Fig. 4(f)],98 and metallic nanoparticle resonances.100 The major
target for these works is to realize narrowband optical absorption (i.e., structure-induced colors)
and keep the strong thermal emission simultaneously for radiative cooling. However, solar-
absorption-induced heating is still inevitable.
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To overcome this challenge, dielectric photonic crystal structures were proposed to minimize
the optical absorption. As shown in Fig. 4(g), self-assembled silica opals were coated on silicon
wafer by a thin PDMS adhesion layer. By implementing silica opals with different diameters, the
close-packed silica photonic crystals can produce different iridescent colors via Bragg diffrac-
tion. Importantly, due to the intrinsically low-loss feature of the dielectric materials (e.g., silica
spheres), these structural photonic materials can suppress the solar heating effect while preserv-
ing the color by reflecting or transmitting narrowband light, making it an ideal candidate for
colored radiative cooling. As shown in Fig. 4(h), the silica opal structure can reflect narrowband
light, resulting in vivid colors that are described by the RGB color chart. Their optical absorption
peaks are all below 10% in visible range [Fig. 4(i)], which is highly desired by colored radiative
cooling. On the other hand, due to the intrinsically strong thermal emission feature of silica
nanospheres, the proposed structure obtained intriguing cooling results under regular solar illu-
mination. Therefore, lossless photonic crystal structures combined with thermal emission engi-
neering is one of the promising strategies to realize better radiative cooling performance, which
should receive more research efforts for future research and development.

6 Conclusion and Overview

In summary, this topic review summarized recent progress in radiative cooling research with
colorful surfaces. Two of the most essential criteria, i.e., minimized solar absorption and
maximal thermal radiation, are highlighted for optimized cooling performance. Although many

Fig. 4 Structural colored photonic structures. (a) Photos and scanning electron microscopy (SEM)
images of cold and hot structures. Measured absorptivity spectra of two structures in (b) solar
wavelength range and (c) LWIR range. (d) Schematic of periodic arrays for colored radiative
cooler, (e) schematic of a radiative cooler with colorful pattern, and (f) schematic of multispectral
camouflage structure. (g) Photos and SEM images of self-assembled nanospheres. (h) Measured
reflection and (i) absorption spectra of the silica opal structures. (a)–(c) Reprinted with permission
from Springer Nature, (d) reprinted with permission from American Institute of Physics,
(e) reprinted with permission from Wiley, (f) reprinted with permission from Springer Nature, and
(g)–(i) reprinted with permission from American Chemical Society.
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commercial paints/pigments for roofing materials and automobile coatings already exhibit strong
thermal radiation features, their broadband solar absorption introduces a large thermal load to
our residential houses and automobiles, resulting in a higher cooling load due to an increase in
electricity consumption. Daytime subambient cooling techniques still face the challenge of min-
imizing the solar heating effects caused by the UV and NIR bands, while preserving a vivid
visual color. The implementation of lossless photonic crystal structures offers one of the most
promising performance in colorful radiative cooling surfaces, especially when compared to the
previously discussed porous films, integrated pigments, or photoluminescent materials. Also we
urge researchers to select existing commercial materials as their controls to better reveal the
actual value of new radiative cooling materials. Last but not least, large-scale manufacturing
processes are essential for the market to actually adopt the new technology to address the emerg-
ing global challenges in climate change and energy sustainability.
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