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Thermodynamic figure of merit
for thermophotovoltaics
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ABSTRACT. Comparing the performance of thermophotovoltaic (TPV) devices is challenging due
to a lack of standard operation conditions. Here, we propose a universal figure of
merit (FOM) that can be used to evaluate the performance of TPV devices that
operate in the far-field regime relative to their thermodynamic bounds. The intro-
duced FOM alleviates temperature dependence and accounts for the fundamental
trade-off between power density and efficiency. Based on this FOM, we present
a classification of TPV performances reported in recent experiments.
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Thermophotovoltaics (TPVs) enable the conversion of heat radiatively emitted by a hot emitter
into electricity using photovoltaic (PV) cells.1 Owing to promising applications in thermal energy
storage and waste heat recovery, the field has been steadily growing, with significant perfor-
mance advancements reported recently.2–7

Despite this rapid progress, it remains challenging to compare the performance of TPV devi-
ces due to a lack of standard operation conditions. Indeed, depending on parameters such as the
temperature and spectral emissivity of the emitter as well as the view factor of the experimental
setup TPVoperation can vary dramatically. Furthermore, the performance of TPV devices must
be assessed with two metrics: the electrical power output density Pel (inW∕m2) and the pair-wise
efficiency η ¼ Pel

PelþQ, where Q is the heat density (in W∕m2) lost in the PV cell.8 η is thermo-

dynamically bound by the Carnot efficiency ηC ¼ 1 − TC∕TH, where TC and TH are the temper-
ature of the cell and emitter, respectively. For systems operating in the far-field regime, Pel is
fundamentally bound by the blackbody limit (σT4

H), where σ is the Stefan–Boltzmann constant.
Since both efficiency and electrical power density depend on TC and TH, it is difficult to

evaluate the performance of TPV systems operating at different temperatures. To eliminate the
temperature dependence in TPV performance metrics, one may present normalized power den-
sity and efficiency: ρ ¼ Pel∕σT4

H and η∕ηC. For reference, in Fig. 1, we present the classification
of recently reported TPV performances in terms of these two normalized metrics. Nonetheless,
describing TPV performance in this way ignores the fundamental trade-off between both
metrics.15 Importantly, although an experiment conducted with a lower view factor will present
a higher TPV efficiency due to reduced ohmic losses, this comes at the cost of compromised
power density and does not reflect on the real operation conditions of a TPV system.6

In this paper, we propose a thermodynamic figure of merit (FOM) to evaluate TPV
performance based on Ref. 9, where we reported the thermodynamic performance bounds for
reciprocal radiative heat engines encompassing all TPV devices to date. The introduced FOM
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alleviates temperature dependence, accounts for the fundamental trade-off between power den-
sity and efficiency, and quantifies how far from the thermodynamic limit a given device operates.
In particular, from Ref. 9, the maximum normalized power ρ ¼ Pel∕σT4

H achievable for a given
efficiency η is well approximated by
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4
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We note that this bound can be overcome by leveraging super-Planckian heat transfer, either
via operation in the near-field regime16 or using thermophotonics.17 In both cases, radiative heat
transfer can surpass the blackbody limit (ρ > 1), rendering Eq. (1) invalid. Here, however, we
focus on conventional far-field operation and a passive emitter. In contrast, the ρðηÞ characteristic
of a practical TPV system with an emitter temperature TH and cell temperature TC is obtained by
sweeping the cell’s voltage from 0 to the open-circuit voltage, forming the characteristic closed
contour shown in Fig. 2 (black curve). The device’s performance for this emitter temperature TH

is bounded by the thermodynamic limit given by Eq. (1) (red curve). For each ðρ; ηÞ data point,
we can calculate an effective temperature Teff

H , or equivalently an effective Carnot efficiency
ηeffC ¼ 1 − TC∕Teff

H , using Eq. (1). The thermodynamic curve corresponding to the maximal
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Fig. 1 (a) Efficiency normalized to the Carnot limit η∕ηC and (b) electrical power output normalized
to blackbody radiation ρ, as reported in different experimental works as a function of the emitter
temperature. We consider TC ¼ 300 K for all cases. Reported references are Swanson9 (only
efficiency was reported), Wernsman et al.,10 Dashiell et al.11 (η∕ηC ¼ 0.261 so it does not appear
on the graph), Woolf et al.,12 Omair et al.,13 Narayan et al.,14 Fan et al.,2 Tervo et al.,3 LaPotin et al.,4

Burger et al.,5 López et al.,6 and Lim et al.7 Numbers in brackets indicate different devices in the
same publication.
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Fig. 2 Illustration of the method to determine the thermodynamic FOM for a given experiment
with TC ¼ 300 K and TH ¼ 1500 K. In the case illustrated here, ϕ ≈ 0.75.
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effective Carnot efficiency (blue curve) is tangential to the experimental curve at the thermody-
namic optimum (black point). We define the thermodynamic FOM as the ratio between the
Carnot efficiencies

EQ-TARGET;temp:intralink-;e002;117;700ϕ ¼ ηeffC

ηC
(2)

based on which we can classify TPV devices operating at different temperatures using a single
metric. This thermodynamic FOM establishes a correspondence between the reported device and
a thermodynamically optimal radiative heat engine operating at a lower emitter temperature Teff

H .
It takes values between 0 and 1, a higher value corresponding to a device operating closer to
the thermodynamic limit.

Although it may appear from Eq. (2) as an efficiency metric, this thermodynamic FOM
encompasses power density as well. Indeed, ϕ is always superior to η∕ηC, and the difference
between the two reflects on ρ. For devices with low power output (ρ ≪ η), ϕ is roughly approxi-
mated by η∕ηC. Using this FOM, we classify in Fig. 3 all TPVexperiments, irrespective of exper-
imental conditions. As seen when comparing Figs. 1 and 3, ϕ ≈ η∕ηC for devices with low power
output (ρ ≪ η). Conversely, the experiments that report the largest normalized power output to
date6,10 show a FOM significantly higher than their normalized efficiency. Also, increasing either
the power or the efficiency systematically increases the FOM. As a result, ϕ accounts for the
power-efficiency trade-off associated with operating at low view factors.

In Fig. 3, we show the FOM achieved by each system as a function of temperature. Thereby,
it is clear that ϕ tends to be higher for higher emitter temperatures. This is because PV cells with
higher bandgaps, which tend to have lower nonradiative recombinations, are usually employed.
As shown in Fig. 3, experiments remain significantly below the thermodynamic limit (ϕ ¼ 1).
Current records are approaching ϕ ≈ 0.47 for very high emitter temperatures (TH > 1500°C).3,4

At the same time, devices operating at lower temperatures have demonstrated ϕ > 0.4.2,5,7

This FOM is a thermodynamic metric, and as such it should not be used to compare two
devices optimized for different applications. Additionally, computing ϕ at the maximum power
point in the characteristic curve (Fig. 2) yields a systematic but negligible underestimation of
the FOM. This has no impact for practical devices that operate far from the radiative limit since
their ρðηÞ characteristic is very narrow.

The introduced FOM can serve as a metric to track progress in the field of TPVs over the
coming years. Indeed, as experiments get closer to the thermodynamic limits, we expect the
power-efficiency trade-off to become of greater concern, making this FOM useful for perfor-
mance assessment.
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Fig. 3 Thermodynamic FOM for a set of reported experiments as a function of the emitter temper-
ature. We consider TC ¼ 300 K for all cases. Reported references are Swanson,9 Wernsman
et al.,10 Dashiell et al.,11 Woolf et al.,12 Omair et al.,13 Narayan et al.,14 Fan et al.,2 Tervo
et al.,3 LaPotin et al.,4 Burger et al.,5 López et al.,6 and Lim et al.7 Numbers in brackets indicate
different devices in the same publication.
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