7 April 2017 Design of thin InGaAsN(Sb) n-i-p junctions for use in four-junction concentrating photovoltaic devices
Author Affiliations +
Abstract
Four-junction solar cells for space and terrestrial applications require a junction with a band gap of <inline-formula< <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"< <mml:mrow< <mml:mo form="prefix"<∼</mml:mo< <mml:mn<1</mml:mn< <mml:mtext<  </mml:mtext< <mml:mi<eV</mml:mi< </mml:mrow< </mml:math< </inline-formula< for optimal performance. InGaAsN or InGaAsN(Sb) dilute nitride junctions have been demonstrated for this purpose, but in achieving the <inline-formula< <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"< <mml:mrow< <mml:mn<14</mml:mn< <mml:mtext<  </mml:mtext< <mml:mi<mA</mml:mi< <mml:mo stretchy="false"</</mml:mo< <mml:msup< <mml:mrow< <mml:mi<cm</mml:mi< </mml:mrow< <mml:mrow< <mml:mn<2</mml:mn< </mml:mrow< </mml:msup< </mml:mrow< </mml:math< </inline-formula< short-circuit current needed to match typical GaInP and GaAs junctions, the open-circuit voltage (<inline-formula< <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"< <mml:mrow< <mml:msub< <mml:mrow< <mml:mi<V</mml:mi< </mml:mrow< <mml:mrow< <mml:mi<OC</mml:mi< </mml:mrow< </mml:msub< </mml:mrow< </mml:math< </inline-formula<) and fill factor of these junctions are compromised. In multijunction devices incorporating materials with short diffusion lengths, we study the use of thin junctions to minimize sensitivity to varying material quality and ensure adequate transmission into lower junctions. An <inline-formula< <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"< <mml:mrow< <mml:mi<n</mml:mi< <mml:mtext<-</mml:mtext< <mml:mi<i</mml:mi< <mml:mtext<-</mml:mtext< <mml:mi<p</mml:mi< </mml:mrow< </mml:math< </inline-formula< device with <inline-formula< <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"< <mml:mrow< <mml:mn<0.65</mml:mn< <mml:mtext<-</mml:mtext< <mml:mi<μ</mml:mi< <mml:mi mathvariant="normal"<m</mml:mi< </mml:mrow< </mml:math< </inline-formula< absorber thickness has sufficient short-circuit current, however, it relies less heavily on field-aided collection than a device with a <inline-formula< <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"< <mml:mrow< <mml:mn<1</mml:mn< <mml:mtext<-</mml:mtext< <mml:mi<μ</mml:mi< <mml:mi mathvariant="normal"<m</mml:mi< </mml:mrow< </mml:math< </inline-formula< absorber. Our standard cell fabrication process, which includes a rapid thermal anneal of the contacts, yields a significant improvement in diffusion length and device performance. By optimizing a four-junction cell around a smaller 1-sun short-circuit current of <inline-formula< <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"< <mml:mrow< <mml:mn<12.5</mml:mn< <mml:mtext<  </mml:mtext< <mml:mi<mA</mml:mi< <mml:mo stretchy="false"</</mml:mo< <mml:msup< <mml:mrow< <mml:mi<cm</mml:mi< </mml:mrow< <mml:mrow< <mml:mn<2</mml:mn< </mml:mrow< </mml:msup< </mml:mrow< </mml:math< </inline-formula<, we produced an InGaAsN(Sb) junction with open-circuit voltage of 0.44 V at 1000 suns (<inline-formula< <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"< <mml:mrow< <mml:mn<1</mml:mn< <mml:mtext<  </mml:mtext< <mml:mtext<sun</mml:mtext< <mml:mo<=</mml:mo< <mml:mn<100</mml:mn< <mml:mtext<  </mml:mtext< <mml:mi<mW</mml:mi< <mml:mo stretchy="false"</</mml:mo< <mml:msup< <mml:mrow< <mml:mi<c
© 2017 Society of Photo-Optical Instrumentation Engineers (SPIE) 1947-7988/2017/$25.00 © 2017 SPIE
Matthew M. Wilkins, James Gupta, Abdelatif Jaouad, Boussairi Bouzazi, Simon Fafard, Abderraouf Boucherif, Christopher E. Valdivia, Richard Arès, Vincent Aimez, Henry P. Schriemer, and Karin Hinzer "Design of thin InGaAsN(Sb) n-i-p junctions for use in four-junction concentrating photovoltaic devices," Journal of Photonics for Energy 7(2), 022502 (7 April 2017). https://doi.org/10.1117/1.JPE.7.022502
Received: 20 July 2016; Accepted: 29 November 2016; Published: 7 April 2017
Lens.org Logo
CITATIONS
Cited by 3 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Sun

Gallium arsenide

Doping

Diffusion

Germanium

Resistance

Solar cells

Back to Top