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ABSTRACT. Rats are used in neuroscience research because of their physiological similarities with
humans and accessibility as model organisms, trainability, and behavioral repertoire.
In particular, rats perform a wide range of sophisticated social, cognitive, motor, and
learning behaviors within the contexts of both naturalistic and laboratory environ-
ments. Further progress in neuroscience can be facilitated by using advanced imaging
methods to measure the complex neural and physiological processes during behavior
in rats. However, compared with the mouse, the rat nervous system offers a set of
challenges, such as larger brain size, decreased neuron density, and difficulty with
head restraint. Here, we review recent advances in in vivo imaging techniques in rats
with a special focus on open-source solutions for calcium imaging. Finally, we provide
suggestions for both users and developers of in vivo imaging systems for rats.
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1 Introduction
Advances in genetically encoded sensors provide increased sensitivity, cell type specificity, and
the ability to record a variety of signals from intracellular calcium1 and membrane voltage,2 to
neurotransmitter release such as dopamine.3,4 New microscopes have been developed to image
across larger areas, with greater resolution, increased depth, and enhanced portability.5–7 These
methods are being increasingly paired with sophisticated analytical techniques, which have
opened new avenues within theoretical neuroscience.8–10

The development of in vivo cellular resolution imaging technologies, and calcium imaging
in particular, has been one of the modern success stories in systems neuroscience.11 Over the past
60 years, these tools have been applied to a variety of model organisms [Fig. 1(a)]. However,
in the last 15 years, the mouse has emerged as a leading model for in vivo cellular resolution
imaging. This is likely due to the confluence of genetic tools, such as transgenic mouse lines
(e.g., Ref. 23), and methods that enable imaging during behavior, such as head-fixed virtual
reality (VR16) and head mounted microscopes.17
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While success of in vivo imaging technologies in mice has inspired the field, progress in
other organisms, including rats, continues. Rats have historically been an important model for
biomedical and neuroscience research (Refs. 24 and 25; see Table 1). Today they remain a lead-
ing model for studying neural dynamics during complex learned behaviors, such as navigation,

Fig. 1 Tasks and behavioral control systems used in rats. (a) Number of papers on PubMed by
year with the search term “calcium imaging” and either “rat,” “mouse,” “zebrafish,” “drosophila,” or
“Caenorhabditis elegans” from 1964 to 2019. Key calcium imaging papers are denoted by a tri-
angle and the citation: development of fura-2, a fluorescent dye to detect calcium,12 the first 2P
microscope,13 development of an early genetically encoded calcium sensor,14 a treadmill system
for in vivo imaging,15 the first VR system used with 2P imaging in mice,16 wearable epifluorescent
microscope,17 development of GCaMP6,18 and development of the open-source miniscope.19

(b) Schematic of a tactile comparison task to measure parametric working memory (top), with rats
(middle) and humans (bottom) performing the task.20 (c) Trajectory of a hide-and-seek task trial
in rats, where the rat emerges from the start box and searches for the human experimenter.21

(d) A fully automated, live-in facility for rat behavioral training.22

Table 1 Pioneering discoveries in systems neuroscience using the
rat model.

Discovery Reference(s)

Adult neurogenesis Altman and Das26

Place cells O’Keefe and Dostrovsky27

Head direction cells Taube et al.28

First BOLD measurement with fMRI Ogawa et al.29

Odorant receptor gene Buck and Axel30

Neural replay Wilson and McNaughton31

In vivo 2P imaging Denk et al.32

Grid cells Hafting et al.33
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decision making, and addiction. The behavioral advantages of this organism have motivated
continued innovation in applying calcium imaging tools. Recent successes reflect this: new im-
aging technologies for rats include multiphoton microscopy using voluntary head restraint,34,35

open-source widefield microscopes for large field of view (FOV) recording,36,37 head mounted
three photon (3P) microscopes,38 and transgenic rats expressing calcium indicators.34,37

Given the significance of the rat animal model in neuroscience and neuroimaging specifi-
cally, continued development of in vivo imaging tools in this species is warranted. This review
will focus on specific opportunities and challenges posed by neuroimaging in the rat model,
describe the technical solutions under development, and provide an outlook for technologies
that may facilitate future imaging experiments.

2 Opportunities in Rat Imaging
The rat model has advantages that motivate its continued use for studying the link between
cellular dynamics and behavior. In this section, we provide an overview of these advantages
and the experimental opportunities of the rat model system.

2.1 Behavioral Repertoire
Rats distinguish themselves as model organisms because of their complex behavioral repertoire,
adaptability, and the variety of tools to study both learned and natural behaviors. Rats can be
trained on a wide range of tasks designed to characterize goal-directed behaviors and decision-
making.39–43 For example, rats can readily learn to perform parametric working memory tasks
inspired by primate tasks20,44 [Fig. 1(b)] and can learn the representation of action-outcome asso-
ciations in a multi-step planning tasks.45,46 Rats can learn behavioral paradigms originally devel-
oped for humans, facilitating comparative studies and translational research in neuropsychiatry.47,48

Rats are also social creatures,49 demonstrating pro-social behaviors in controlled laboratory
environments,50,51 including empathy,52 cross species play21 [Fig. 1(c)], and collaborative group
search.53

The wide range of behavioral features in rats contribute to their usefulness as a model
organism for basic and translational neuroscience research. Unfortunately, direct, quantitative
comparisons of behaviors between rats and other model organisms, in particular mice, is rarely
performed, and this limitation is particularly acute in complex decision-making tasks, which are
presently of great interest.54 Ethological behaviors are somewhat conserved; mice and rats have
similar aggression, grooming, feeding, and reproductive behaviors.55 While the overall behav-
ioral patterns are consistent between species, there are slight nuances to many of these innate
behaviors (e.g., rats exhibit more complex grooming phases than mice). A quantitative compari-
son between rat and mouse behavior across a range of tasks would facilitate an unbiased assess-
ment of the pros and cons of each species. In some cases, such as addiction, these side-by-side
comparisons have been performed. For example, there is some indication that rats are a better
model for studying alcohol relapse behaviors than mice.56

Numerous open-source tools and pipelines have been developed for behavioral training and
measurement in rats. These include VR navigation systems57–59 automated operant systems22,39

[Fig. 1(d)], touchscreen training,60 and voluntary head restraint.61–63 Together, the availability of
experimental and computational tools for behavioral research in rats provides frameworks for
collecting and analyzing high-throughput data in a variety of laboratory settings, which can
easily be paired with multimodal imaging approaches.64

2.2 Body Size
Adult rats weigh hundreds of grams (250 to 350 g for a 10 week old male Long Evans)65 and have
significant capacity for implantable and wearable devices. Rats can carry head mounted devices
weighing 35 g while still displaying natural behaviors, such as rearing and rapid head orienting.37

This capacity reduces constraints on development allowing for microscopes with larger FOVs36,37

and or more complex optical components.66 Beyond the rat’s physical strength, the larger size
and rectilinear shape of the skull provides ample “real estate” for device attachment.

Beyond the technological advantages that rats provide because of their physiology, rats can
also act as a bridge to larger model organisms for neuroscientific research. As we describe below,
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the brains of larger animals pose challenges to imaging, which will require new imaging capa-
bilities. Rats, with their relatively wide range of available transgenic lines and genetic tools, may
provide a valuable test case for developing and expanding technology for other animals, such as
ferrets, macaques, and marmosets.

3 Challenges in Rat Imaging

3.1 Head Restraint
Head restraint is widely used in neuroscience to stabilize the brain position relative to the
imaging apparatus. Head restraint in rats can be accomplished through an acclimation process
in which the duration of restraint is gradually increased.67 However, compared with mice, this
approach is unreliable and more limited in rats—they show increased stress and diminished
behavioral flexibility during head restraint.68 Consequently, forced head restraint is not fre-
quently used in conjunction with complex cognitive task learning in rats. This has motivated
the development of head-mounted microscopes and voluntary head-fixation (see Sec. 4).

3.2 Decreased Neuronal Density
While being 8 to 10 times the body mass of mice, rats have three times the number of neurons;
much of this increase in neurons is in the cerebellum, and the fraction of cortical neurons remains
constant even as total brain size increases.69–71 Mice have on average 78,672 neurons and 68,640
nonneuronal cells per milligram of cortical tissue, whereas rats have 41,092 neurons and 60,430
nonneuronal cells per milligram.69 In terms of density, rats have half the number of neurons per
milligram of cerebral cortex compared with mice.70,72 Lower neuron densities will result in fewer
imaged neurons when assuming the same FOVand signal-to-noise ratio (SNR). This challenge is
not unique to rats—it is a challenge shared by many larger-brained animals, including several
primate species.69,70,73

3.3 Increased Cortical Thickness
The rat neocortex is thicker than the mouse neocortex; for example, the motor cortex of rats has
an average thickness of 1.6 mm while in mice motor cortex has an average thickness of 1.0 mm.71

Since the scattering length of the rat cortex is similar to that of the mouse,32,74–78 the excitation
light penetrates to a comparable depth in both animals. Overall, this results in reduced optical
access into deeper layers in the rat brain. In most cases, cell somas in layer 2/3 of rat neocortex,
which ranges from 200 to 500 μm,79 can lie below the range of some head-mounted one-photon
imaging systems17 and makes imaging of infragranular layers difficult. To surpass these limi-
tations, researchers can implant microprisms, relay gradient index (GRIN) lenses, or use 3P
microscopy, all three of which we discuss in more detail in the following section (see Sec. 4).

3.4 Vascular Size and Branches
Rat brains have an increased number of capillary branches per unit volume and larger radii of
vessels compared to mouse brains.80,81 This can lead to changes in the optical properties of tissue,
such as increased absorption of light at different wavelengths due to hemoglobin.37,82–84 In addi-
tion, these differences in vasculature can contribute to difficulties in surgery (such as increased
bleeding) when compared to mice.

3.5 Transgenesis
Tools for the production of transgenic rats are well developed and several lines of genetically
modified rats that express calcium sensors have been produced (see Sec. 4). However, the costs,
speed of generation, and number of off the shelf transgenic lines in mice greatly exceeds the
rat model at present. The availability of transgenic lines is an important feature that should be
considered when selecting a model organism for calcium imaging studies.

4 Tools for Rat Imaging
Below, we highlight the recent applications of imaging tools and labeling techniques in rats.
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4.1 Transgenic Lines
Several useful transgenic lines for neuroscience and specifically in vivo imaging are available
from several sources, including the Rat Resource and Research Center (RRRC) and the Rat
Genome Database.85 Available lines include Cre driver lines for cell type specific expression
(e.g. Refs. 86 to 88) and genetic models for human neuropsychiatric disorders, such as models
of autism.89 The Rat Genome Database provides a valuable list of resources for the development
of transgenic rats.90

Transgenic lines have also been developed that express genetically encoded calcium sensors
for in vivo imaging34,37 [Figs. 2(a)–2(c)]. These lines, created by Janelia Research Campus on
the Long-Evans background, express the genetic calcium indicator GCaMP6f throughout large
regions of the CNS, with different transgenic lines having clusters of expression in different
areas.

Sensor expression in at least two transgenic rat strains, Thy-1-GCaMP6f-7 and Thy-1-
GCaMP6f line 8, is sufficient for cellular resolution imaging through either one or two-photon
(2P) microscopes.34,37,92 However, the use of newer GCaMP variants delivered by adeno asso-
ciated viral vectors (AAV) injection appears to provide improved SNR and action potential (AP)
detection. For example, Chornyy et al.93 found that single AP detection was detected in 10.6%
(48/450) of GCaMP6f-labeled neurons labeled in Thy-1-GCaMP6f animals, whereas it was
detected in ∼85% (412/485) of jGCaMP7s-positive cells labeled with AAVs. These results
indicate that new GCaMP variants and/or viral labeling may improve signal detection.

4.2 Viral Vectors
At the time of writing, the majority of published studies involving imaging of genetically
encoded sensors in rats express sensors using direct injection of AAVs35,36,63,94–98 [Figs. 2(d)
and 2(e)]. AAVs are favored due to the high-levels of expression that are difficult to obtain
in transgenics99 and the availability of new genetically encoded sensors, which are being devel-
oped more rapidly than new transgenic lines. Direct injection of high-titer viral vectors into the
rat CNS is widely used to achieve local expression of genetically encoded sensors. To achieve
more widespread expression, several alternative approaches have been explored. One method is
using serial injections, which has been demonstrated across the rat cortex. In this approach,
a series of injections are performed at regular increments, tiling a larger volume. This approach
aims to achieve a more uniform labeling over a larger volume than could be achieved by a single
injection [Figs. 2(d) and 2(e)].67,88,100 Several groups have also reported widespread CNS infec-
tion in adults following systemic administration through intravenous,101–103 intraventricular, and
intrathecal injection.104,105 These techniques reduce the potential for damage to neural tissue
following direct injections. The efficiency of these techniques is enhanced by the development
of enhanced AAV capsids (such as PHP.eB), which yield improved gene transfer in rat
CNS.104,106 While these approaches are intriguing, they have not been widely used in combina-
tion with in vivo functional imaging approaches in rats.

4.3 In Utero Gene Delivery
Another method for gene delivery used in rats is via in utero electroporation, a method for trans-
fecting neural tissue with plasmid DNAvia injection into embryonic brains [Figs. 2(f) and 2(g)].
In utero electroporation enables widespread expression in neurons throughout the CNS.91,107–111

In addition, in uteroAAV injections can be used to achieve widespread cortical labeling in rats.112

A strength of in utero gene delivery is that it can be implemented during different stages of
development to yield spatially specific expression within the neocortex without the need for
laminar specific promoters. Moreover, the method can be optimized to produce widespread infec-
tion from a single injection. That said, gene delivery to the rat embryo requires specialized tech-
niques and equipment, and there is some indication that introduction of foreign genetic material
during development can produce an immune response that alters or even damages the brain.113

4.4 Head-Mounted Microscopes Designed for Mice
Miniaturized head mounted epifluorescence microscopes allow recording of calcium dynamics
in freely behaving animals.17 This approach bypasses the problem of head restraint and stabi-
lization while achieving cellular resolution imaging.114 These microscopes have been widely
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used in mice, but several groups have applied these miniature microscopes in rats.92,94–98,115

However, performance in these scopes is often optimized for mice. For example, early gener-
ations of UCLA microscopes have an FOV of ∼1 mm2. Next generation miniscopes designed
with rats in mind have a larger FOV to account for the decreased cell density in the species
(discussed in greater detail below).

Fig. 2 Labeling systems for rats. (a) Sagittal section of a Thy1 GCaMP6f-9 rat (from Ref. 37). (b),
(c) 2P imaging of layer 2/3 of the cerebral cortex of a transgenic rat expressing GCAMP6f,
where red pixels identify ROIs.37 (d) Calcium traces from the 17 ROIs in panel C at 30 Hz.37

(e) Epifluorescence image of a cranial window in a rat following serial viral injections with
AAV9-GCaMP7f.67 (f) 2P imaging of a 500 μm × 500 μm FOV from rat cortex injected with
GCaMP7f.67 (g) Z -scored traces from the rat visual cortex for three cycles of presentation of a
moving bar sweeping in the nasal-to-temporal direction at 0.24 Hz. Traces are colored and sorted
by the corresponding cell’s phase at the stimulation frequency.67 (h) Confocal imaging of a coronal
section of the rat hippocampus expressing Lck-GCaMP6f following in utero electroporation.91

(i) Mean calcium activity projection of a neuron expressing Lck-Gcamp6f following in utero electro-
poration and using 2P microscopy.91 (j) Calcium traces from the same cortical neuron, with colors
corresponding to the dashed ROIs in panel (i).91
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The size and strength of the rat can create issues for the physical stability of head-mounted
microscopes. Open-source systems, such as headcap covers, have been developed to protect and
stabilize the scope.116 A headcap system for protecting the microscope also permits a solution for
reducing movement-related torque on the microscope from the tethering cable. Once implanted,
an anchoring point on the headcap offset from the microscope can be used to fix the tether to
the headcap and thus reduce force transferred at the connection point with the microscope.

4.5 Microprisms
As discussed, rat cortex is thicker relative to mouse cortex and this increased depth increases light
scattering, decreases SNR, and prevents optical access to deep layers. One way to bypass these
issues is to image through microprisms implanted directly into neural tissue as previously
reported in mice.117,118 Recently, Alexander et al.92 successfully paired microprisms with
head-mounted one-photon microscopes to image large populations of neurons in rat neocortex
(Fig. 3). In this preparation, a 1 mm2 microprism attached to a relay lens was positioned near
neurons expressing GCaMP6f to create an FOV perpendicular to the dorsal surface of the brain
spanning multiple cortical layers [Figs. 3(a)–3(c)]. A baseplate was attached to the skull above
the microprism, which allowed a head-mounted microscope to be mounted [Fig. 3(d)]. Using this
preparation, it was possible to simultaneously monitor calcium dynamics of hundreds of neurons
with robust SNRs in Thy1-GCaMP6f transgenic rats performing track running or free explora-
tion [Figs. 3(e)–3(k)]. Well known spatial coding properties of the retrosplenial cortex (RSC)
were replicated using this method in rats including trajectory-dependent coding [Fig. 3(h)] and
coding for environmental boundaries in egocentric coordinates [Fig. 3(k)].

4.6 Head-Mounted 1P Microscopes Designed for Rats
Head-mounted widefield microscopes with larger FOVs have been developed for rats (Fig. 4).
Larger FOVs enable the monitoring of larger populations of neurons and permit the examination
of cross-regional dynamics not afforded by a smaller FOV targeting a single brain region.
Previously, researchers developed cScope, a head mounted widefield macroscope to access
FOVs up to 8 mm2 [Figs. 4(a)–4(c)].37 cScope uses a hemodynamic illumination collar with
green LEDs for reflectance illumination of cortical intrinsic signal and a blue LED for fluores-
cence imaging. Recordings using cScope have similar performance compared to conventional
widefield epifluorescence microscopes, with imaging frame speed up to 30 Hz. However, the
authors did not report cellular resolution calcium dynamics or whether this fluorescence signal
originates from soma or neuropil.

A recent implementation of the UCLAMiniscope, Miniscope-LFOV, was developed for rats
[Figs. 4(d)–4(f)].36 This system is a one-photon microscope, which has two electrically adjust-
able working distance (�100 μm) configurations that allow for cortical imaging via a cranial
window and deep brain imaging via a relay GRIN lens. It has a 3.6 mm × 2.7 mm FOV, with
one FOV in CA1 revealing 1357 cells.36 The SNR in this microscope is considerably higher
when compared with the performance of previous Miniscope iterations, attributable to newer and
more sensitive detection systems in Miniscope-LFOV compared to its Miniscope predecessors.
Recently published work details a system for online data pre-processing with Miniscope-
LFOV,119 enabling researchers to perform motion correction, calcium trace extraction, and
recognize neural patterns, which are correlated to behavior.

4.7 Head-Mounted Multiphoton Microscopes Made for Rats
The carrying capacity of rats has facilitated the development of advanced head-mounted micro-
scopes, such as multiphoton microscopes. The first head-mounted 2P microscope was developed
for rats in the early 2000s, by Helmchen et al. [Figs. 5(a)–5(e)].120 This microscope was 25 g in
weight and 7.5 cm in height. Scanning was achieved by a fiber tip that resonated to form a
Lissajous pattern. More recent iterations allow for increased performance, including raster scan-
ning, and provide optical access to deeper areas with cellular resolution imaging in behaving rats
[Figs. 5(f)–5(h)].66 Today head mounted 3P microscopes for rats have cellular resolution as deep
as 1.1 mm with a 150 μm square FOV [Figs. 5(i)–5(k)]38 and more recently adapted to mice.121

Like their tabletop counterparts, head-mounted multiphoton microscopes have several
key features that facilitate calcium imaging in vivo in larger brained mammals, such as rats.
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Fig. 3 Calcium imaging in transgenic rats through implanted microsprisms. (a) Position of
the implanted microprism for imaging in the rat RSC relative to the rat head. (b) Schematic of
the implantation location in a sagittal section. (c) Schematic of the prism imaging approach.
(d) Image of an implanted rat wearing a head mounted one-photon camera in an operant chamber.
(e) Maximum intensity projection from the imaging FOV. (f) Example time traces from selected
ROIs from E showing fluorescence transients during an operant-based task. (g) Deconvolved
Ca2þ traces from 30 simultaneously recorded RSC neurons. (h) Six RSC neurons, recorded using
this preparation, exhibit differential activation for different trajectories on a delayed alternation
spatial working memory task on a T-maze. Gray lines represent trajectory on track, split into left-
ward and rightward trials. Colored dots indicate animal position and head direction at the time of
a calcium transient. Color indicates head direction according to legend on top right. (i) Number of
cells per session. (j) Distribution of mean transient rate from a single recording. (k) Simultaneous
recording of six RSC neurons with egocentric boundary vector responsivity. (Left) Trajectory
plot with animal path in gray and spike locations indicated in colored circles where color is animal
heading orientation in the environment. (Middle) Two-dimensional ratemap of “spiking” activity.
(Right) Egocentric boundary ratemap showing position of boundaries at time of calcium transient.
F, front; B, behind; R, right; L, left. All plots are maximum normalized (blue = zero activity,
yellow = maximal).
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The longer excitation wavelengths allow for less scattering in tissue and greater power delivery at
depth. The non-linear properties of excitation provide optical sectioning and a reduction in out-
of-focus excitation from fluorescence contamination from sources above and below the imaging
plane.13,122 Multiphoton imaging can improve the ability to resolve cellular structures like axonal
projections and dendrites in scattering tissue and can reduce contamination from the neuropil
in vivo.123 However, head-mounted multiphoton microscopes are still outperformed by table top
microscopes, including both commercial and custom systems, due to fewer space and weight
constraints in the tabletop environment. Therefore, in order to combine the power to table top
scopes with automated behavioral training systems, voluntary head restraint tools have been
developed.

4.8 Voluntary Head-Restraint
Voluntary head-restraint is a system in which trained rodents submit to periods of mechanical
head restraint for reward (Fig. 6). Initially developed for rats for repeatable presentation of visual
stimuli,61,62 demonstrations that computer controlled training systems for precise positioning
and stability catalyzed renewed interest in voluntary head restraint.63,126 Work in rats inspired
researchers to develop automated behavioral systems using voluntary head-fixation in mice.127–130

These head fixation systems have been designed for mechanical stability and repositioning
within several microns and to be used together with widefield imaging or optogenetics.

Researchers have adapted voluntary restraint systems for cellular resolution population
calcium imaging in behaving rats.34,35,63 These systems used kinematic clamps to achieve high
repositioning accuracy and produce the mechanical stability required by cellular resolution
imaging [Figs. 6(d)–6(f)]. Kinematic clamps131,132 are commonly used in optical and mechanical
systems to achieve precise and repeatable alignment. To this end, recent work demonstrates that
head fixation devices with micron-scale and submicron-scale repositioning accuracy for cellular
resolution imaging are feasible.124 These systems improved upon previously published Kelvin-
style kinematic coupling systems63 by utilizing a three vee-groove system, also known as a
Maxwell system, which is simpler to manufacture and enables greater long-term performance.133

The design principles described have been scaled up to evaluate voluntary head restraint in larger
animals.134

Fig. 4 Head mounted widefield microscopes designed for rats. (a) Schematic of a rat wearing
cScope, a head-mounted widefield macroscope.37 (b) Image of the FOV in a rat implanted with
cScope. (c) Left: cScope fluorescence image, with colored dots indicating the location of the pixels
that contribute to the responses on the right. Right: Flash response dynamics of the corresponding
single pixel ROIs. (d) Picture of a rat wearing MiniLFOV.36 (e) Maximum projection of a motion-
corrected recording session. Scale bar: 500 μm. (f) Left: Map within panel (e) of 59 cells. Scale bar:
100 μm. Right: Calcium traces from a subset of 15 cells within panel (f) across 6 min.
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Recent work demonstrates the potential of combining voluntary head-restraint with trans-
genic rats to record neuron population dynamics over long timescales.34 In this study, a new line
of transgenic rats were reported to express GCaMP6f at high levels in hippocampal neurons.
These rats were implanted with a newly developed magnetic-based kinematic coupling system
and trained in voluntary restraint. Upon becoming proficient, animals performed hundreds of
daily fixations over multiple months. 2P imaging through an implanted optical cannula over

Fig. 5 Head-mounted multiphoton microscopes used in rats. (a) Diagram of the light path and
setup of the first head-mounted 2P microscope.120 (b) Schematic of the internal components in
the fiberscope design. (c) Images of somatosensory cortex L2/3 neurons filled with calcium
green-1. (d) Zoomed in image of a different dendrite from in somatosensory cortex L2/3.
(e) Example calcium green-1 fluorescence trace along a dendritic process following current injec-
tion at 1 s intervals, with 10 ms resolution. (f) Picture of a rat wearing a head-mounted 2P micro-
scope.66 (g) Camera image of the primary visual area, with the 2P imaging sites identified with the
red dashed line. (h) Left: Two color 2P imaging of primary visual cortex using sulforhodamine 101
and OGB1-AM. Right: calcium time courses of the soma of three neurons (colored circles in the left
panel) across 30 s. (i) Image of a 120 g rat wearing a head mounted three-photon microscope.38

(j) Histological section of GCaMP6s-labeled neurons in posterior parietal rat cortex, with the yellow
dotted box showing the attainable imaging depth (1120 μm). (k) Left: Labeled neurons at 1120 μm
depth below the cortical surface. Right: Example spontaneous calcium kinetics from FOV on left.

Kim et al.: Advances in cellular resolution microscopy for brain imaging in rats

Neurophotonics 044304-10 Oct–Dec 2023 • Vol. 10(4)



Fig. 6 Principles of voluntary head restraint. (a)–(c) A rat voluntarily head restraining across three
stages: pre insertion, positioning of the head clamp and fixation, and release.63 (d) The principles of
kinematic coupling. Objects can be exactly constrained with stable points equal to the degrees of
freedom the object has, or over-constrained such that there are multiple stable points possible.
Kinematic coupling enables high degrees of repeatability and accuracy by exactly constraining
objects.124 (e) Toy model of a vee groove kinematic clamp.124 (f) Diagram of the degrees of free-
dom constrained in a vee groove kinematic clamp.125 (g) Behavioral paradigm schematic where
rats are trained to voluntarily head restrain during an evidence accumulation task.42 (h) 2P imaging
of GCaMP3-labeled cortical neurons across several voluntary head-restraint trials. Top panels
show V1 without motion correction. Bottom panel shows fluorescence transients from the selected
neuron (indicated by the white arrow). On each trial, a visual stimulus was presented with
differently oriented drifting gratings as denoted by the black arrow, with the blue line underneath
indicating time of visual stimulus presentation.

Kim et al.: Advances in cellular resolution microscopy for brain imaging in rats

Neurophotonics 044304-11 Oct–Dec 2023 • Vol. 10(4)



hippocampal CA1 provided the ability to track a large population of hippocampal neurons for
well over a year. Other long term imaging preps (over 140 days) can also be achieved with viral
labeling93 (Fig. 7) and with fluorescent dextran (98 days).135 We point out that each of these three
groups removed the dura, and future studies will be required to evaluate the impact of different
surgical preparations on longitudinal imaging in rats. These studies demonstrate the potential for
longitudinal imaging in rats, which could be valuable for experiments on aging, plasticity, and
representational drift.

5 Outlook
Below, we highlight future directions that may improve cellular resolution imaging in the rat
model and may help experimentalists determine if the rat model is appropriate for their research
program.

5.1 Next Generation Optical Design
Next generation imaging systems for rats may be improved by increasing the imaging depth,
increasing the FOVof imaging systems, and enhancing the SNR to account for the physiological
limitations discussed above. The use of 3P imaging can help compensate for the increase in
cortical thickness and enable the recording of neuronal activity down to layer 5,38 whereas the
use of a large FOV instrument may compensate for the reduction in cell density. The combination

Fig. 7 Longitudinal 2P imaging in rats. (a) Brightfield images of the same cranial window in a rat,
beginning from day of implantation (day 0). (b) 2P images of jGCaMP7s-expressing neurons with
ROIs and the corresponding spontaneous activity traces from the somatosensory cortex of the
same rat in (a). Note that the window quality remained high over 144 days, as reflected in the
clarity of the window in the brightfield images.93
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of the two, which has been recently described,136,137 could enable activity recording from large
neuronal populations in the rat.

Computational approaches have been used to reduce out-of-focus fluorescence neuropil
contamination123 and suppress measurement noise in calcium imaging data.138,139 Aside from
improving the quality of the data, reduction of noise and out-of-focus light can potentially enable
deeper imaging in the rat brain. Computational methods may also aid with the development of
new imaging systems. Software designed to simulate the optical, anatomical, and physiological
properties of the mouse brain140 may allow for rapid development of next generation imaging
systems and provide a standardized ground truth for evaluating their performance. Extending this
simulation tool to rats would be a valuable next step and should be feasible given the extensive
physiological data available.69,70,80,81

5.2 Imaging in Cellular Compartments
Several new molecular genetic approaches could be considered in order to improve imaging
performance in rats. For example, neuropil contamination could be reduced by expression of
soma restricted calcium sensors.141,142 In addition, simultaneous imaging of multiple cell types
could be achieved by restricting sensors to readily differentiable cellular compartments, such as
axons and soma. Finally, imaging of apical dendrites could allow access to deep cortical neurons,
an approach used to support population imaging in macaques.143

5.3 Multi-Device Imaging
The larger size of the rat loosens spatial constraints with neuroimaging methods. One way would
be to incorporate multiple head-mounted microscopes targeting different regions, akin to in vivo
electrophysiology. This approach has been applied in mice by targeting two distant regions of
interest (ROIs) by developing a smaller one-photon microscope configuration.144,145 Multiple
off-the-shelf head-mounted microscopes could be situated on the rat skull using angled, longer
relay lenses; this would enable proper clearance for the microscope and lens attachment.

A similar method could be utilized to pair in vivo neuroimaging, in vivo electrophysiology,
or perturbation methods in freely behaving rats. As a consequence of a greater working area,
ferrules or cannulae could be positioned in areas outside of the imaging window, counter to
current methods that record calcium dynamics and provide optogenetic stimulation within the
same FOV. Calcium activity of large neural ensembles or neuromodulatory dynamics in one
region could be compared with respect to electrophysiological activity—including oscillatory
dynamics—in another area.115 Neuroimaging signals in the same FOV could be compared before
and after optogenetic or pharmacological manipulations to another structure.

6 Conclusion
Extending neuroscience tools to a diverse set of species will allow researchers to study how the
brains of different species solve similar biological problems.146 This is synergistic with new pri-
orities for cross-species comparative work, in which similar behavioral methods and recording
tools are applied across multiple species.147–149 Expanding technologies to organisms beyond
the species that the technology was originally developed poses a significant challenge. It is our
hope that rats can serve both as a valuable model for systems neuroscience and act as a bridge to
new framework for applying in vivo imaging tools more broadly across a diverse set of species.
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