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ABSTRACT. Significance: The non-invasive measurement of cerebral blood flow based on dif-
fuse optical techniques has seen increased interest as a research tool for cerebral
perfusion monitoring in critical care and functional brain imaging. Diffuse correlation
spectroscopy (DCS) and speckle contrast optical spectroscopy (SCOS) are two
such techniques that measure complementary aspects of the fluctuating intensity
signal, with DCS quantifying the temporal fluctuations of the signal and SCOS quan-
tifying the spatial blurring of a speckle pattern. With the increasing interest in the use
of these techniques, a thorough comparison would inform new adopters of the ben-
efits of each technique.

Aim: We systematically evaluate the performance of DCS and SCOS for the meas-
urement of cerebral blood flow.

Approach: Monte Carlo simulations of dynamic light scattering in an MRI-derived
head model were performed. For both DCS and SCOS, estimates of sensitivity to
cerebral blood flow changes, coefficient of variation of the measured blood flow, and
the contrast-to-noise ratio of the measurement to the cerebral perfusion signal were
calculated. By varying complementary aspects of data collection between the two
methods, we investigated the performance benefits of different measurement strat-
egies, including altering the number of modes per optical detector, the integration
time/fitting time of the speckle measurement, and the laser source delivery strategy.

Results: Through comparison across these metrics with simulated detectors having
realistic noise properties, we determine several guiding principles for the optimiza-
tion of these techniques and report the performance comparison between the two
over a range of measurement properties and tissue geometries. We find that SCOS
outperforms DCS in terms of contrast-to-noise ratio for the cerebral blood flow signal
in the ideal case simulated here but note that SCOS requires careful experimental
calibrations to ensure accurate measurements of cerebral blood flow.

Conclusion: We provide design principles by which to evaluate the development of
DCS and SCOS systems for their use in the measurement of cerebral blood flow.
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1 Introduction
Diffuse correlation spectroscopy (DCS), an optical technique that relies on sampling the inten-
sity fluctuations of a speckle pattern set-up by diffusely scattered coherent light to quantify
deep tissue blood flow, is seeing increased adoption as a non-invasive research tool for cerebral
perfusion monitoring in clinical settings including critical care and sleep apnea, and for func-
tional brain imaging.1–6 However, as usually implemented, DCS relies on the use of single or
few-mode fibers to sample the speckle pattern in conjunction with photon counting detectors to
construct the intensity temporal auto-correlation function, g2ðτÞ.7 This dramatically limits the
photon throughput [e.g., in comparison with near-infrared spectroscopy (NIRS) where large
area detectors and multi-mode fiber bundles can be used] and poses practical challenges to
the use of DCS in translational studies. Consequently, substantial effort in the field is now
dedicated to improving the signal-to-noise ratio (SNR) of diffuse optical blood flow
measurements.8

In this context, a major area of investigation is focused on the use of massively parallel
detection. This can be achieved to some extent by employing single photon avalanche photo-
diode (SPAD) arrays.9–11 However, a more practical approach is to use camera sensors. Multi-
speckle measurements have been demonstrated based on temporal speckle fluctuations using
high speed linescan cameras,12 as well as based on spatial speckle contrast using standard
CMOS imaging devices.13 While the linescan camera implementation preserves information
about the full range of autocorrelation delays, the need for high-speed sampling and limited
number of pixels available (hundreds to thousands) requires a heterodyne approach for coher-
ent gain to overcome sensor noise.14,15 Sampling the spatial speckle contrast measured in an
area some distance away from the illumination point provides high SNR potential as megapixel
CMOS sensors are now available with low read noise and high frame rates. The latter approach,
inspired by the laser speckle contrast imaging technique used for superficial perfusion imag-
ing,16 has been termed speckle contrast optical spectroscopy/tomography (SCOS/SCOT)13,17

and has recently been demonstrated to allow light collection through multi-mode fiber bun-
dles,18,19 and offer more than an order of magnitude improvement in SNR with a lower price for
cerebral blood flow (CBF) monitoring versus DCS measurements at the same source–detector
separation.18

Given the differences in how SCOS and DCS measurements derive blood flow from the
fundamental scatterer motion, it is necessary to understand how both the sensitivity to cerebral
perfusion, and the overall noise performance depend on system components and operating
parameters for both methods. In this work, we seek to systematically explore SCOS and
DCS performance envelopes and to provide guidance for investigators in the field planning stud-
ies involving optical monitoring of cerebral perfusion. Starting with Monte Carlo simulations of
dynamic light transport in an MRI-derived, segmented head geometry, we add realistic meas-
urement noise and consider operating scenarios constrained by representative hardware charac-
teristics and light throughput. We then compare SCOS versus DCS intrinsic sensitivity and
achievable contrast-to-noise ratio (CNR) for brain perfusion quantification.

The results provide a guide for choosing optimal illumination strategies, camera integra-
tion time (for SCOS), and source–detector separations. We conclude by discussing limitations
of the study, including aspects of real-life measurements not considered in simulation and
potential pitfalls. We made the code for generating the sensitivity, coefficient of variation
(CoV), and contrast-to-noise ratio estimates from the outputs of Monte Carlo simulations
run on an open-source dataset of MRI-derived head models publicly available as an example
in the scatterBrains repository20 so that researchers can evaluate the performance of a par-
ticular DCS or SCOS system with the parameters different from what has been explored in
this paper.
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2 Methods

2.1 Diffuse Correlation Spectroscopy
DCS estimates the flow in tissue through the analysis of the normalized intensity autocorrelation
function, g2ðτÞ. The autocorrelation of the intensity signal is related to the electric field temporal
autocorrelation function g1ðτÞ by the Siegert relation,21 expressed as

EQ-TARGET;temp:intralink-;e001;117;668g2ðτÞ ¼ 1þ βjg1ðτÞj2; (1)

where β is the coherence parameter,22 which is related to the coherence length of the source, the
geometry of the measurement, number of modes detected, and the degree of environmental light
contamination. The Siegert relation connects the measured signals to the underlying fluctuations
of the electric field due to dynamic scattering events. The electric field autocorrelation function in
the DCS measurement can be described as an integral of individual pathlength-specific corre-
lation functions over the pathlength distribution detected. This form, given in Eq. (2),23 allows for
the connection between the measured intensity autocorrelation function and the dynamics in
the tissue:

EQ-TARGET;temp:intralink-;e002;117;548g1ðτÞ ¼
Z

∞

0

PðsÞ exp
�
−
1

3
k20n

2hΔr2ðτÞi s
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�
ds; (2)

where PðsÞ is the distribution of pathlengths, s, taken by photons in the tissue, k0 is the wave-
number of the detected light in a vacuum, n is the index of refraction of the sample, hΔr2ðτÞi is
the mean squared displacement of the scattering particles, and l� is the reduced, mean free path of
photons in the tissue that is described as the inverse of the tissue’s reduced scattering coefficient
ðl� ¼ 1

μ 0
s
Þ. For DCS measurements in tissue, the mean squared displacement term is assumed to

reflect diffusive motion24 ðhΔr2ðτÞi ¼ 6BFiτÞ, where the blood flow index (BFi) describes the
effective diffusion coefficient. While this description of flow in vessels as a diffusive process is
not immediately intuitive, multiple theoretical and simulation studies have examined the appro-
priateness of the model to describe the detected signals and found the diffusive process, arising
from the shear-induced diffusion effect in dense colloids, such as blood, as a good description
under standard DCS measurement conditions,24–27 though some conflicting theories have been
proposed.28 When fitting correlation curves in this study, the model selected for g1ðτÞ is that
reflecting a semi-infinite sample measured in the reflectance geometry, given as24
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3μaμ

0
s þ 6k20n

2μ 02
s BFiτ

p
, μa is the optical absorption coefficient,
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p
, ρ is the distance between the source and detector, rb ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðl� þ 2zbÞ2

p
,

zb ¼ 2
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s

ð1þReff Þ
ð1−Reff Þ, and ReffðnÞ ¼ −1.440n−2 þ 0.71n−1 þ 0.668þ 0.0636n.

2.2 Speckle Contrast Optical Spectroscopy
SCOS is a relatively newer technique that estimates the blood flow in tissue through the assess-
ment of the measured speckle contrast of light collected after diffuse propagation in tissue.13

Detected light is projected to an imaging sensor, and the fluctuations in the speckle pattern over
the exposure time of the sensor produce an image of the blurred speckle pattern. The degree of
blurring is quantified by the speckle contrast of the image, K, which is defined as the ratio of the
standard deviation of the intensity divided by the mean intensity ðK ¼ σI

hIiÞ. In the absence of

noise, the measured contrast is proportional to the DCS autocorrelation function though29

EQ-TARGET;temp:intralink-;e004;117;150K2
f ¼

2β

Texp

Z
Texp

0

g21ðτÞ
�
1 −

τ

Texp

�
dτ; (4)

where Kf is the fundamental speckle contrast and Texp is the exposure time. In contrast to the
single/few-mode fibers used in DCS measurements, light detection from the tissue in SCOS
makes it possible to use large multimode fibers or multi-mode fiber bundles, greatly increasing
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the optical throughput, and, due to the number of pixels that are typically present in imaging
sensors, allows for incredibly scalable, massively parallelized speckle channel detection.18,19

2.3 Simulation Models

2.3.1 Description of segmented MRI models and Monte Carlo simulation

This study utilized a structural MRI brain scan acquired as part of a larger study approved by
Mass General Brigham Institutional Review Board.30,31 The tissue was segmented into four cat-
egories: scalp, skull, cerebrospinal fluid (CSF), and brain (combining gray and white matter) with
optical and flow properties listed in Table 1. The segmented volume was converted to a mesh,
with maximum targeted edge length of 5 mm and a maximum targeted tetrahedral volume of
200 mm3, as was described previously.30 We utilized a mesh-based model to represent the tissue,
as mesh-based simulations have been shown to be more accurate when investigating curved
structures and can provide efficient representation of both large- and small-scale features.32,33

Two brain flow states were considered, labeled “baseline” and “perturbed,” respectively, to allow
for the assessment of the sensitivity to cerebral perfusion changes. To investigate the influence of
extracerebral tissue on the measurements, three probe positionings were chosen in areas where
anatomical features resulted in different distances from the surface of the scalp to the surface of
the brain (10, 15, and 20 mm). The full details of the segmentation and probe placement are
discussed in a previous work.30 The probe positions on the head [Fig. 1(a)] as well as an example
of the segmented volume [Fig. 1(b)] are shown in Fig. 1.

Optical Monte Carlo simulations were run using MMC32 with 1.5 × 109 photon trajectories
launched per simulation. Source–detector separations between 5 and 40 mm were simulated at a
spacing of 5 mm. For each source–detector separation, the unnormalized, electric field autocor-
relation function ðG1ðτÞÞ was calculated using the discretized form of Eq. (2), given as24

Table 1 Optical properties at 850 and 1064 nm used for the Monte Carlo simulations. The bold
characters indicate the changing value in the perturbed case.

Tissue
μa at

850 nm
μ 0
s at

850 nm
μa at

1064 nm
μ 0
s at

1064 nm Baseline BF i Perturbed BF i

Scalp 0.164 cm−1 7.4 cm−1 0.11 cm−1 5.3 cm−1 1 × 10−8 cm2∕s 1 × 10−8 cm2∕s

Skull 0.155 cm−1 8.1 cm−1 0.13 cm−1 5.8 cm−1 1 × 10−10 cm2∕s 1 × 10−10 cm2∕s

CSF 0.017 cm−1 0.1 cm−1 0.122 cm−1 0.07 cm−1 1 × 10−10 cm2∕s 1 × 10−10 cm2∕s

Brain 0.170 cm−1 11.6 cm−1 0.17 cm−1 8.3 cm−1 6 × 10−8 cm2∕s 7.2 × 10−8 cm2∕s

Fig. 1 Depiction of the optical Monte Carlo geometry used for the simulations. The probe positions,
shown in (a), were selected to achieve extracerebral thicknesses of 10, 15, and 20 mm. The tissue
layers were segmented from the structural MRI scans and labeled as is shown in (b) in a sagittal
plane near the midline. The gray matter and white matter tissue were combined into a single brain
category.
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EQ-TARGET;temp:intralink-;e005;117;736G1ðτÞ ¼
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where Np is the number of detected photons, Nt is the number of tissue categories, Yn;i is the
dimensionless momentum transfer of photon n occurring in tissue category i, and Ln;i is the
partial pathlength of photon n in tissue category i. For this work, two implementations of
DCS measurements and one SCOS implementation were evaluated. For DCS, the first was
DCS operating at 850 nm based on silicon SPADs and the second was DCS operating at
1064 nm based on super-conducting nanowire detectors (SNSPDs).34 For SCOS, the implemen-
tation model was based on 850 nm operation with a CMOS camera with pixel number, read noise,
and quantum efficiency properties based on aggregated camera properties for commercially avail-
able cameras.35 Although great success has recently been shown in the application of interfero-
metric methods to both SCOS and DCS,14,15,36–41 we restricted the analysis in this work to strictly
homodyne methods. The photon flux at each simulated source–detector separation was estimated
from the diffuse reflectance output from MMC and scaling the results based on estimates from
previous studies.42 For 850 and 1064 nm, the photon flux per mode per ANSI limited source at a
25 mm source–detector separation was estimated to be 10 and 67.1 kcps, respectively.42

2.3.2 Noise model used for DCS simulations

To evaluate the simulated performance of DCS measurements, we utilized the correlation noise
model,43,44 given as

EQ-TARGET;temp:intralink-;e006;117;460σðτÞ ¼
ffiffiffiffi
T
t

r 2
64 β2

ð1þe−2ΓT Þð1þe−2ΓτÞþ2τ
Tð1−e−2ΓT Þe−2Γτ

1−e−2ΓT þ ::
2hni−1βð1þ e−2ΓτÞ þ ::

hni−2ð1þ βe−ΓτÞ

3
75

1
2

; (6)

where σðτÞ is the standard deviation of the correlation function at a time lag τ, T is the width of
the correlation function time bin, t is the averaging time of the measurement, hni is the average
count rate per correlation time bin T, and Γ is the decay rate of the temporal intensity autocor-
relation if it were modeled as a single exponential decay, i.e., g2ðτÞ ¼ 1þ β expð−ΓτÞ. To deter-
mine the noise performance of DCS for a given measurement arrangement, 100 realizations of
Gaussian white noise of amplitude σðτÞ for all delays, τ, were added to the Monte Carlo sim-
ulation generated g2ðτÞ curve and the 100 noisy curves were fit for BFi values using the
semi-infinite solution to the correlation diffusion equation with estimated optical properties
(850 nm: μa ¼ 0.15 cm−1, μ 0

s ¼ 8.5 cm−1; 1064 nm: μa ¼ 0.15 cm−1, μ 0
s ¼ 6.2 cm−1) with the

assumption that the coherence parameter, β, was known.

2.3.3 Calculation of speckle contrast and speckle contrast noise

The fundamental squared speckle contrast (K2
f) was computed for each measurement condition

and source–detector separation based on Eq. (4). To evaluate the simulated performance of SCOS
measurements, we utilized the recently published model for speckle contrast noise.45 The mea-
sured speckle contrast not only exclusively reflects the fundamental speckle contrast (Kf) due to
the tissue dynamics but also reflects contributions from shot noise (Ks), read noise (Kr), and dark
noise (Kd). Thus, the square of the measured speckle contrast (K) can be expressed as a sum of
the squares of each contrast term [Eq. (7)].

EQ-TARGET;temp:intralink-;e007;117;153K2 ¼ K2
f þ K2

s þ K2
r þ K2

d: (7)

In this work, as was done previously,45 due to the range of exposure times investigated, we
neglected the contribution from dark noise. While this assumption breaks down in the long expo-
sure regime (10s of ms, Sec. S1 in the Supplemental Material), measurement systems do not
typically operate in this regime. To estimate the CoVof the blood flow index from the simulated
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speckle contrast, noise estimates (σK2 ) for each of the contrast terms were computed as described
previously using a dynamic speckle evolution model45 for each measurement condition and
source–detector separation.45 100 noisy realizations were sampled from a normal distribution
with mean K2

f and standard deviation σK2 . The data were fit for BFi using an inverse model
based on Eq. (4) and the solution to the correlation diffusion equation based on the semi-infinite
geometry for g1ðτÞ with the same optical properties used for DCS fitting and the assumption that
the coherence parameter, β, is known. Fitting is performed by reducing the error between the
fundamental squared contrast of the measurement ðK2

fÞ and the modeled contrast computed as a
function of the exposure time of the measurement and the estimated blood flow index. In these
simulations, the contributions to the squared speckle contrast from shot noise (K2

s ) and read noise
(K2

r) were assumed to be accurately removed, though in reality, the inaccurate subtraction of
these terms may lead to drift in the measured blood flow.18,45

2.3.4 Description of comparison metrics

To estimate the sensitivity of each simulated measurement to changes in the CBF signal, two sets
of simulations were run: a baseline flow state and a brain activation flow state (þ20% CBF, Sec.
S2 in the Supplemental Material). The fraction of the flow change recovered was used as a metric
for the sensitivity of the measurement to the CBF signal, given as

EQ-TARGET;temp:intralink-;e008;114;501Sensitivity ¼
�

ΔBFi
BFi;baseline

�
�

ΔCBFi
CBFi;baseline

� : (8)

The degree of cerebral sensitivity necessary to make an effective measurement depends on
the measurement conditions and methods used to address the extracerebral contamination,
including use of short separation regression,46 use of overlapping channels,47 use of repeated
stimuli for block averaging, multi-layer or Monte Carlo fitting,31,48 or the use of the pressure
modulation technique.49 For evaluation of the results, we estimate a cerebral sensitivity of
≥10% is acceptable for effective measurements given the requirements of CoV and CNR
described below. The noise performance of the measurement was assessed by computing the
CoVof the fit BFi values, given as

EQ-TARGET;temp:intralink-;e009;114;347CoV ¼ σBFi

μBFi

; (9)

where σBFi
is the standard deviation of the fit results and μBFi

is the average value of the fit
results. Variability in blood flow due to typical physiological processes (cardiac, respiratory,
Meyer waves, etc.50) has been estimated to contribute to a CoV of ∼0.1 for measurements of
CBF.51 Instrument based CoV computed from the simulations is deemed acceptable if the esti-
mated CoV is less than the physiologic noise (CoV ≤ 0.1). To combine both the estimates of
sensitivity and CoV, we computed a contrast-to-noise metric, which is the ratio of the sensitivity
to the CBF and the CoV, given as

EQ-TARGET;temp:intralink-;e010;114;222CNR ¼ Sensitivity

CoV
: (10)

For an effective measurement, we desire a CNR ≥ 1. A graphic describing the full simulation
pipeline can be found in Sec. S4 in the Supplemental Material.

2.3.5 Description of the characteristics of the simulated hardware

The descriptions of the relevant parameters for the three simulated detection systems (850 nm
DCS, 1064 nm DCS, and 850 nm SCOS) and the two simulated laser sources (850 and
1064 nm) are given in Tables 2 and 3, respectively. Each of the DCS systems is based on
a single-element detector module, and the SCOS system is based on a single CMOS camera
with typical noise performance. The hardware parameters selected for this work were based on
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hardware components used by our group previously and do not constitute an exhaustive list of
possible configurations, though they are still representative of the general landscape of possible
configurations. In addition to the different hardware parameters, different conditions of light
collection from the tissue were also explored. For the DCS systems, we evaluated the perfor-
mance differences between single-mode fiber (780 HP, two polarization modes) and few-
mode fiber (SMF28, 12 total modes at 850 nm, six total modes at 1064 nm) as several works
have utilized few-mode fiber, especially for measurements made at longer source–detector
separations.5,52,53 To more effectively model the influence of dark counts on the DCS signal,
using a previously developed state space model of a single photon detector,54 realistic series of
photon count timestamps were generated considering the fluctuating speckle signal intensity,
randomly occurring dark counts and the detector hold off time. The BFi was fit from the result-
ing autocorrelation functions of the generated timestamp series. We explored a similar concept
with the SCOS simulations with the projection of light onto the sensor. By altering the ratio of
the size of the speckle projected onto the camera to the pixel size, known as the s∕p ratio, the
number of independent fiber modes projected onto a single pixel would be altered, as was
explored in previous work.45 For the SCOS system, the simulated light was collected from
the tissue by a fiber bundle consisting of 2000, 50 μm fibers with a numerical aperture
(NA) of 0.66. This bundle specification gives an estimated number of fiber modes equal to
1.48 × 107 at 850 nm. For a uniformly illuminated camera sensor, the square root of the ratio
of number of pixels (2.5 megapixels) and the number of fiber modes sets the minimum s∕p
ratio achievable. For this simulation, the minimum s∕p ratio is equal to 0.41, as further
decreases in s∕p ratio would result in underfilling the camera and reducing the number of
pixels used for speckle contrast calculation.

2.3.6 Description of performance comparisons made across different
measurement settings

For DCS and SCOS, there are several comparable measurement conditions that can be adjusted
to tune either the sensitivity of the measurement to the cerebral signal or the SNR of the

Table 2 Description of simulated detection hardware.

DCS @ 850 nm
(Si SPAD55)

DCS @ 1064 nm
(SNSPD56) SCOS @ 850 nm35

Detector QE 55% 90% 20%

Dark current/count rate 0, 500, 1000, 1500 cps 0 cps 0 e−∕s

Read noise 0 0 2.5 e−

Max frame rate Free runninga Free runninga 150 Hz

Number of pixels 1 1 2.5 megapixels

aWhile the single photon detectors are free running, they both exhibit hold off times after a photon detection
event, which limits the total possible number of photons counted per second. Si-SPAD: 22 ns (4.5 × 107 cps
saturation limit), SNSPD: 33 ns (3.0 × 107 cps saturation limit).

Table 3 Description of the simulated laser hardware.

Laser source @ 850 nm57 Laser source @ 1064 nm58

ANSI standard59 limited power
for a 3.5 mm diameter spot

38 mW 100 mW

Max laser output power 300 mW (7.9× ANSI single spot) 1 W (10× ANSI single spot)

Illumination strategies enabled Up to 8 source points (DCS);
300 mW illumination with 1/7.9
duty cycle (SCOS)

Up to 10 source points (DCS)
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measurement. Namely, we find parallels between the range of the correlation function decay that
is fit for the BFi and the exposure time used for the camera sensor; the strategy of source light
projection to the tissue that maximizes the number of photons per mode given the duty cycle of
the measurement; and the number of modes projected to the single photon detector and the s∕p
ratio used for the camera. For each comparison, we quantified the sensitivity to the cerebral
signal, the CoV of the measurement at a 10 Hz sample rate, and the contrast-to-noise ratio
of the measurement at 10 Hz. We chose this sampling rate to meet the requirements of functional
measurements, where the cardiac pulsatile signal must be filtered out without aliasing, as well as
fast enough to sample physiological dynamics in clinical monitoring. As it is not feasible to
explore the full matrix of combinations of these parameters, we instead focused on each one
in turn, making simplifying assumptions about the other three. In Sec. 3.1, we evaluated the
performance impact of different fitting ranges for the DCS correlation function and exposure
times for SCOS acquisition. In Sec. 3.2, we utilized the optimal fitting range and exposure time
found in Sec. 3.1 and evaluated the optimal source delivery strategy for both DCS and SCOS. In
Sec. 3.3, taking the optimal fitting range/exposure time and laser source delivery strategy, we
evaluated the influence of the number of independent fiber modes sampled by a single detector
by modifying the simulated fiber used in the case of DCS and the s∕p ratio for SCOS. And
finally in Sec. 3.4, we evaluated the performance of DCS and SCOS BFi measurements at the
optimized operating condition as explored in Secs. 3.1–3.3 as a function of extracerebral tissue
thickness. The simplifying assumptions made for each section are detailed in Table 4, with the
shaded diagonal representing the parameter being explored in each section.

3 Results

3.1 Effect of Correlation Function Fitting Range and Exposure Time on
Expected Performance of DCS and SCOS

As has been evaluated previously,60 fitting the earlier part of the correlation function increases the
sensitivity of the measurement to the faster flows measured and to the cerebral signal, but at the
cost of the signal to noise ratio of the fit. In Fig. 2, the results for sensitivity [Fig. 2(a)], CoV
[Fig. 2(b)], and contrast-to-noise ratio [Fig. 2(c)] for each source–detector separation for the
15 mm extracerebral thickness geometry are shown for 850 nm DCS with CW laser illumination
with a single ANSI limited source and single-mode fiber detection. For the long separation mea-
surements (SDS ≥ 20 mm), the CNR of the measurement is maximized when the entire curve is
fit, with the decrease in the CoV outweighing the reduced cerebral sensitivity. While measure-
ments at short separation are not typically analyzed for their brain sensitivity, higher contrast-to-
noise for the cerebral signal is found when fitting the early part of the curve, showing the rel-
atively small contributions of long path photons to the overall measurement at short separation.61

This effect at short separation is relatively small, as shown in Fig. 2(c), and thus for the remaining
DCS results presented in this work, the fitting range of the correlation function was set to be the
entire curve. For DCS at 850 nm with a single SPAD detector, maximal CNR to the cerebral
signal is achieved at 15 mm in an area where the brain is 15 mm under the scalp.

In Fig. 3, we show the expected SCOS performance in the same simulation geometry as a
function of the exposure time of the camera. For these results, the simulations reflect a spatial
sampling of the speckle where the pixel size matches the speckle size (s∕p ratio ¼ 1) and are
performed with a single ANSI limited source emitting continuously, which does not take full
advantage of the reduced duty cycle of the camera at shorter exposure times. These simulated
conditions match the initial implementations of SCOS.13 Despite the suboptimal conditions for
SCOS measurements, a ∼40× improvement in maximal CNR is achieved as compared to the
maximal CNR achieved by single channel DCS at 850 nm. Similar trends are observed when
comparing SCOS performance to DCS performance, with cerebral sensitivity decreasing with
increasing exposure time, though the CoV changes observed differ slightly at the limit of longer
exposures. For DCS, which measures relatively continuously, except during the hold-off times of
the single photon detectors, the relationship of the noise of the measurement to the sampling rate
of the measurement is relatively straight forward and is scaled as the square root of the sampling
rate. For SCOS, the maximum frame rate of the camera and the exposure time of the camera
interplay with the final sampling rate of the SCOS BFi measurement, and the degree of frame
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Table 4 Description of the simplifying assumptions for each results section.

DCS fit range/SCOS
exposure time Illumination strategy

Number of modes
per detector

Extracerebral
tissue thickness

Section 3.1 DCS: explored for values
from 10% to 100% of the
decay range

SCOS: Exposure times
between 1 μs and 100 ms
explored at all source–
detector separations

DCS and SCOS: CW
illumination with a
single ANSI limited
source

DCS: unpolarized
single-mode detection
fiber (two modes)

SCOS: unpolarized
detection with s∕p ratio
equal to 1

DCS and SCOS:
15 mm
extracerebral
thickness

Section 3.2 DCS: 100% of g2ðτÞ
decay is used

SCOS: Exposure
times between 1 μs
and 100 ms explored
at short (15 mm) and
long (30 mm) source–
detector separations

DCS: three strategies
explored
(1) Single CW source
(2) Multiple CW sources
(3) Single pulse width
modulated source

SCOS: four strategies
explored,
(1) Single CW source
(2) Multiple CW sources
(3) Single pulse width
modulated source where
the max laser power is
modified to satisfy
P in � f s � T exp ≤ PANSI,
(4) Single pulse width
modulated source where
the frame rate of the
camera is modified
to satisfy
Pmax � f s � T exp ≤ PANSI

DCS: unpolarized
single-mode detection
fiber (two modes)

SCOS: unpolarized
detection with s∕p
ratio equal to 1

DCS and SCOS:
15 mm
extracerebral
thickness

Section 3.3 DCS: 100% of g2ðτÞ
decay is used

SCOS: exposure times
between 1 μs and
100 ms explored for
short (15 mm) and long
(30 mm) source detector
separations as well as
a comparison between
all source–detector
separations at the
exposure time, which
results in optimal CNR

DCS: CW illumination
with a single ANSI
limited source

SCOS: the pulse width
modulated illumination
strategy (#3 or #4
explored in Sec. 3.2)
which maximized
CNR

DCS: unpolarized
detection with a
single-mode fiber
and a few-mode fiber

SCOS: unpolarized
detection with s∕p ratios
ranging from 2 to the
minimum s∕p ratio
(0.41)

DCS and SCOS:
15 mm
extracerebral
thickness

Section 3.4 DCS: 100% of g2ðτÞ
decay is used

SCOS: The exposure
time, which results in
optimal CNR is
selected for each
simulated condition

DCS: either CW
illumination with a
single ANSI limited
source or pulse width
modulated illumination,
whichever approach
maximized CNR

SCOS: The pulse
width modulated
illumination strategy
(#3 or #4 explored
in Sec. 3.2), which
maximized CNR

DCS: unpolarized
single-mode detection
fiber (two modes)

SCOS: minimum s∕p
ratio (0.41) allowed
by the number of
simulated modes
and number of
pixels

DCS and
SCOS: three
thicknesses
explored from
three different
positions on
the head
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averaging at a particular sampling rate is affected. As shown in Fig. 3(b), the CoV has roughly
two distinct regimes; the first where the exposure time does not limit frame rate (which is instead
limited by the maximal frame rate of the camera hardware (150 Hz, 6.67 ms)) and increasing the
exposure time increases the number of detected photons without affecting frame averaging, and
the second where the longer exposure time requires a slower frame rate, thereby reducing frame
averaging. For measurements at short source–detector separations, the contrast-to-noise ratio
increases to an asymptotic value before reaching the critical exposure time, then decays with

Fig. 2 Comparison of the performance of DCS at 850 nm as a function of the percent of the decay
of the autocorrelation function that is used for BF i fitting. (a) The sensitivity to the cerebral signal
has a monotonically increasing relationship with source–detector separation, and a monotonically
decreasing relationship with the percentage of the curve that is fit. (b) The CoV monotonically
decreases when more of the correlation function is fit. Dividing the sensitivity by the CoV results
presented in (b), the contrast-to-noise ratio for each source–detector separation can be seen in (c).
Two relatively distinct patterns can be seen when comparing short separation measurements
(SDS ≤ 10 mm) to the rest of the source–detector separations. The reduction in the CoV when
the fitting range of the curve is increased is less at shorter separations, which increases the relative
weight of the decrease in cerebral sensitivity as the fitting range of the curve is increased. For
longer separation measurements, the decrease in CoV is much greater as the fitting range is
increased and leads to optimal measurements being made when the entire curve is considered
for the fit.

Fig. 3 Comparison of SCOS performance as a function of exposure time. (a) Cerebral sensitivity
for SCOS matches DCS sensitivity when extremely short exposure times are used. For exposures
longer than ∼300 μs, for all source–detector separations explored, sensitivity drops to a steady
state value that is ∼10% to 60% of the maximal value. The reduced sensitivity is compensated
for by the improved CoV of the fit blood flow index (b), which reflects the benefits of massively
parallelized speckle detection. Combining the two metrics, (c) the contrast-to-noise ratio plots
show a relatively complex relationship with exposure time, reflecting the interplay of increasing
exposure time with frame averaging and the effect of the noise sources.
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increasing exposure time as frame averaging is reduced. For measurements made at long source–
detector separations, due to the reduced photon flux, the plateau is not reached before the critical
exposure time. For these source–detector separations, performance can be improved by extend-
ing the exposure time beyond the critical exposure time, and up to a certain increase in exposure
time, the benefit of collecting more light with a longer exposure outweighs the decrease in frame
averaging.

3.2 Effect of Light Source Delivery Strategy on DCS and SCOS
As noted previously, the use of a continuous wave laser emitting continuously causes some light
to be “wasted” during the unexposed time of the camera sensor. This effect is less prevalent in the
DCS measurements, as the duty cycle for a single photon detector-based system is ∼100% for the
conditions in which DCS measurements are typically made but can become substantial for
SCOS, especially at shorter exposure times where the duty cycle is inherently low. Laser sources
typically emit more power than what is allowed by ANSI skin exposure limits, requiring attenu-
ation. To take advantage of this excess laser power, the input can be pulse width modulated to
keep the average power at the ANSI limit while utilizing the full power of the laser during the
detector-on period.18 Alternatively, multiple source positions14 or larger spot sizes9,15 can be used
to increase the number of photons available for detection while remaining in compliance with the
ANSI limit of power delivery per unit area. Four laser delivery strategies were explored in this
work: (1) continuous illumination with a single ANSI limited source with a diameter of 3.5 mm
(same as in Figs. 2 and 3). (2) Continuous illumination with multiple ANSI limited sources
arrayed in non-overlapping fashion around the detector, limited in number by the maximum
output of the laser, to deliver the full power of the laser with continuous illumination. (3) A
pulsed laser strategy where the laser input power (Pin) is modulated such that Pin � fs � Texp ≤
PANSI and the frame rate (fs) is not adjusted. (4) A pulsed laser strategy where the frame rate of
the camera is modulated such that Pmax � fs � Texp ≤ PANSI and the max laser power is used.

For DCS, we compared the performance of the strategies for both 850 nm DCS [Fig. 4(a)]
and for 1064 nm DCS [Fig. 4(b)]. Because the duty cycle of a DCS measurement is ∼100%, for
the comparison of pulsed laser strategies, we evaluated a single pulsed laser strategy where the
duty cycle of the measurement is chosen to be the ratio of the max laser power divided by the
ANSI limit for a single spot with a 3.5 mm diameter (Table 3). This is equivalent to the frame rate
limiting approach given as illumination strategy 4 for SCOS. The use of the pulsed laser strategy
in DCS has both advantages and disadvantages relative to the single source CW illumination
approach. For short-separation measurements that exhibit high count rates (>100 kcps), the pre-
dicted noise of the correlation function, given in Eq. (6), will depend much more on (1) the first
term within the square root, which has no dependence on count rate, and (2) the averaging time of

Fig. 4 Comparison of the simulated CNR of DCS measurements at (a) 850 and (b) 1064 nm as a
function of source–detector separation and laser input strategy. For both 850 nm DCS and
1064 nm DCS, for source–detector separations with sufficiently high count-rate with a single
CW source, the use of a pulsed laser source with a reduced duty cycle is seen to limit the observed
CNR. This relationship flips with longer source–detector separations as the count rate drops and
the use of a pulsed laser with a reduced duty cycle is seen to improve the CNR.
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the measurement. The predicted consequence of this dependence is observed in the short sep-
aration measurements, where the simulated CNR for the pulsed laser strategy is reduced by a
factor of ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Duty Cycle

p
. For longer source–detector separation measurements, the relationship

is flipped, with the increase in the instantaneous count rate outweighing the reduced averaging,
and the improvement in CNR by a factor of ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1∕Duty Cycle

p
. For the multi-source CW strat-

egy, in the photon starved, long source–detector separation regime, the improvement in CNR
over the single-source CW strategy is approximately the ratio of the maximum input power
to the ANSI-limited single source input power. As has been previously reported,34,42 we observe
in these simulations that DCS at 1064 nm outperforms DCS at 850 nm in terms of the contrast-to-
noise ratio of the cerebral signal.

A comparison of the effect that each of these strategies has on the CNR of SCOS measure-
ments as a function of exposure time is shown in Fig. 5. In the case of the short separation
measurement [15 mm, Fig. 5(a)], because shot-noise limited performance is reached at shorter
integration times, by applying the frame rate limiting pulsed strategy, the reduction in frame
averaging is an overall stronger influence on the SNR of the measurement, and an overall
decrease in CNR is observed. In the case of the long separation measurement [30 mm,
Fig. 5(b)], shot-noise limited performance is not reached before the exposure time begins limiting
the frame rate, so a different behavior is observed, with distinct separation between the perfor-
mance of the multi-source and pulsed source strategies. A more in-depth discussion of the shapes
of the CNR curves can be found in Sec. S3, Fig. S3 in the Supplemental Material. For both sets of
simulated measurements, the multiple CW source strategy provides the most consistently
improved results, as it provides the max power of the laser continuously with the full duty cycle
of a CWmeasurement, though nearly equivalent performance can be achieved through one of the
pulsing strategies for both source–detector distances. These observations parallel the DCS results
presented in Figs. 4(a) and 4(b). For long separation measurements, best sensitive to cerebral
physiology, these results suggest that if there is enough room for probe placement on the head,
a multi-source strategy provides the best CNR for DCS and SCOS measurements, though care
must be made to ensure that the spread of the total photon pathlength distribution across all
source locations remains within the coherence length of the laser to avoid reducing the coherence
parameter of the measurement.

3.3 Comparison of the Effect of Increased Modal Content on DCS and SCOS
Signal Quality

Unlike for NIRS, where multimode fibers and fiber bundles are used, large increases in detector
fiber diameter do not appreciably improve DCS signal quality.53 The increased intensity fluc-
tuations measured on the detector due to each additional independent fiber mode are canceled out

Fig. 5 Comparison of source illumination strategies on the CNR of the SCOS measurement for
(a) a short separation measurement and (b) a long separation measurement. For both sets of
simulated measurements, the multiple CW source strategy sets the performance ceiling for the
pulsed source strategies, though the strategy that is advantageous at each source–detector sep-
aration is different. For the short separation, limiting the source power in favor of averaging is
advantageous, whereas at the long separation, the opposite is true.
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by the increase in the shot noise of the increased average intensity. However, this is only strictly
true for noiseless systems. The contribution of read and dark noise to speckle measurements
makes reaching shot-noise limited performance difficult when using single-mode fiber, and the
use of larger fibers in DCS or smaller s∕p ratio in SCOS can allow for the compensation of these
real-world non-idealities. To demonstrate the improvement provided by the increased number of
modes being measured by each detection element, we show the results of the expected CNR for
DCS utilizing single-mode fiber and few-mode fiber in Fig. 6. For 850 nm, this is a comparison
between two mode illumination in the case of the single-mode fiber, and 12 mode illumination in
the case of the few-mode fiber. For 1064 nm, the single-mode fiber guides two modes, and for the
same few-mode fiber (SMF-28), the fiber carries six modes at the longer wavelength. The results
presented in Figs. 6(a) and 6(b) show the performance for a noiseless DCS detector with a single
source at 850 and 1064 nm, respectively. For the noiseless detectors, as expected, there is a
modest benefit in CNR with the use of few-mode fiber over single-mode fiber for both wave-
lengths. The benefit is seen to increase when realistic dark counts of the detector are considered.
The larger benefit of the few-mode fiber is shown in Fig. 6(c).41 The range of dark/room light
counts explored here are consistent with what is expected for a thick silicon SPAD55 or for a
measurement done in a bright environment. For shorter separation measurements, the count rate
is high enough that for the range of noise counts simulated, the effect on the contrast-to-noise
ratio is negligible [Fig. 6(d)]. For longer separations though, the influence of noise counts

Fig. 6 Comparison of DCS contrast-to-noise ratio when fibers with different number of guided
modes are used. For noiseless detectors, shown in (a) and (b), the use of few-mode fiber produces
a modest improvement in performance, maximized at longer source detector separations. The
influence of dark noise on the CNR is explored in (c), where the detectors modeled in (a) are mod-
eled with a simulated dark count rate of 500 cps. The difference in performance at (d) the 15 mm
source–detector separation and (e) the 30 mm source–detector separation show similar trends as
shown in (a) and (b), with the few-mode fiber providing modest improvement in CNR over the
single-mode fiber at both the short and long source–detector separation in the noiseless condition.
The greater benefit of few-mode fiber is seen at the longer source–detector separation (e), where
the decrease in CNR with increasing dark counts is reduced relative to the single-mode fiber.
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becomes evident, and the use of few-mode fiber allows for nearly comparable performance to the
noiseless case, even with an extreme dark count rate (for Si SPADs) of 1500 cps [Fig. 6(e)].

For SCOS, we explored a similar effect caused by the difference in the size of speckles
projected onto the camera sensor. This effect has been explored previously in the literature,45

and here we expand the analysis to different source–detector separations and evaluate the con-
trast-to-noise ratio achieved through the use of different s∕p ratios. The results presented here
show the maximal possible CNR produced by either of the pulsed laser strategies, whether frame
rate limiting or max power limiting. For short separation measurements, in a comparison of the
contrast-to-noise ratio at 15 mm with different s∕p ratios [Fig. 7(a)], the use of small s∕p ratio
projection allows for the use of shorter exposure times due to reaching shot noise limited per-
formance more quickly, increasing the sensitivity to the cerebral signal, thus increasing CNR. In
addition, when the number of speckles available is much greater than the number of pixels, for
reductions in s∕p ratio to s∕p ≈ 0.4,45 the number of independent speckle observations (NIOs)
increases, improving the averaging characteristics, and SNR of the measurement. For
s∕p ratio < ∼0.4, the number of independent observations is approximately equal to the number
of pixels (for s∕p ¼ 0.4, NIO ¼ 0.95 � npixel45) and further reductions of s∕p ratio will only
minimally affect the number of independent observations. Further, if the number of available
speckles is not sufficient to utilize all pixels on the camera, an overall decrease in the SNR
of the measurement will be observed for decreasing s∕p ratio. For long separation measurements
[Fig. 7(b)], the use of smaller s∕p ratios allows for the measurement to reach shot-noise limited
performance before the exposure time becomes long enough to affect frame averaging, maxi-
mizing possible CNR. We make the comparison of maximal achievable CNR as a function of
source–detector separation and compare across s∕p ratio values in Fig. 7(c), demonstrating the
benefits given by projecting a smaller speckle size.

Fig. 7 Comparison of SCOS CNR as a function of the s/p ratio. For both (a) short and (b) long
source–detector separation, the use of a smaller s∕p ratio achieves the highest CNR by allowing
for more independent speckle observations as well as increasing the intensity measured by each
pixel of the camera sensor, enabling shot noise to overwhelm the other sources of noise. (c) The
results are compared as a function of source–detector separation, and the greatest benefit to
decreasing the utilized s∕p ratio is found for long source–detector separation measurements.
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3.4 Effect of Extracerebral Thickness on the Simulated Performance of SCOS
and DCS

Following the exploration of experimental factors that we have control over, we examined the
effect of subject specific geometric factors on the diffuse optical measurements. For each of the
three explored extracerebral tissue thicknesses (10, 15, 20 mm), we present the cerebral sensi-
tivity [Figs. 8(a), 8(d), and 8(g)], CoV [Figs. 8(b), 8(e), and 8(h)], and CNR [Figs. 8(c), 8(f), and
8(i)] for each of the three techniques explored here (850 nm DCS, 1064 nm DCS, and 850 nm
SCOS). For DCS results, we present the optimal laser delivery strategy (either CWor duty cycle
limiting) in terms of contrast-to-noise ratio for single-mode fiber. For SCOS results, we present
the optimal pulsed laser strategy (max power limiting or frame rate limiting) for the smallest
possible s∕p ratio (s∕p ¼ 0.41). Since it is often preferable to minimize optical probe size for
practical reasons, we do not consider the multi-source approach for this analysis.

Overall, increasing extracerebral thickness decreases cerebral sensitivity and minimally
affects CoV, leading to an overall reduction in CNR. While cerebral sensitivity is lower for

Fig. 8 (a), (d), (g) Comparison of sensitivity, (b), (e), (h) CoV, and (c), (f), (i) contrast-to-noise ratio
between the two DCS implementations and the one SCOS implementation across simulations with
different extracerebral thicknesses. The CoV can be seen to not vary greatly between extracere-
bral thicknesses, with slight deviation in the SCOS shorter source–detector simulations. Cerebral
sensitivity falls off with increasing extracerebral thickness, as was observed previously,30 and as
was seen in Figs. 2(a) and 3(a), DCS exhibits slightly higher sensitivity at a given source–detector
separation. Contrast-to-noise ratio decreases with increasing extracerebral thickness and is seen
to be highest for 850 nm SCOS at any given source–detector separation considered. The scaling of
the y -axis for each parameter explored (sensitivity, CoV, and CNR) is kept constant across extrac-
erebral thicknesses to aid in comparison.
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SCOS at the optimal CNR operating point, the contrast-to-noise ratio is consistently higher than
either DCS implementation across all explored source–detector separations and extracerebral
thicknesses. The influence of increased extracerebral thickness on the sensitivity is exaggerated
at shorter source–detector separations as compared to longer separations, which shifts the peak of
the CNR curve to longer source–detector separations with increasing extracerebral thickness. We
also label the optimal laser source strategy used for each source–detector separation and extrac-
erebral thickness. For DCS, the switch from CW operation to pulsed operation happens at com-
monly used source–detector separations (15 to >20 mm for 850 nm, 25 to >30 mm for
1064 nm).

4 Discussion and Conclusion
In this work, we have evaluated the potential performance for two implementations of DCS and
one implementation of SCOS for the measurement of CBF using Monte Carlo simulations of
subject specific MRI models and appropriate signal noise models. We have observed the large
possible improvements in SNR and contrast-to-noise ratio offered by SCOS. The somewhat
lower SCOS sensitivity to the cerebral signal as compared to DCS at the optimal CNR operating
condition could be due to the single exposure measurements explored, which inherently reduces
the information collected by the measurement, as well as using an exposure time much greater
than the decorrelation time of the autocorrelation function. Previous work has demonstrated
reconstruction of DCS such as data from SCOS speckle contrast measured at multiple expo-
sures, which crucially include exposure times on the order of the decorrelation time where the
cerebral sensitivity of single exposure SCOS is comparable to the cerebral sensitivity of DCS
[Figs. 2(a) and 3(a)]. This approach would allow for the same cerebral sensitivity to be
achieved.62 In practice, the reduced SNR of the shorter exposure time measurements, as well
as the need to sacrifice frame averaging to collect multiple exposures is more detrimental to the
CoV, and the slight decrease in sensitivity of the single exposure measurement is more than
made up for with the massively parallelized speckle measurements, reflected in the almost two
orders of magnitude estimated improvement in maximally achievable CNR. While this simu-
lation study points to SCOS as a superior technique for the measurement of CBF, several sim-
plifying assumptions are made that may limit what is achievable in practice. As was noted in
previous work,63 in MRI scans, hair is invisible, though has a great influence on the detectability
of light in optical experiments (∼20% to 50% reduced photon flux).64 While we ignored the
effects of hair in this work, the reduction in SNR caused by the presence of hair should affect
both DCS and SCOS similarly. For both SCOS and DCS, we assume here that saturation of the
detector is not possible, therefore allowing unrealistically high signal levels to be achieved. This
affects SCOS and DCS in different ways. For DCS, implementing the true hold-off time of the
single photon detectors will cause distortions of the correlation function as the count rate
reaches closer to the maximal possible count rate (1∕τHold off). For SCOS, saturation of the
detector would artificially decrease the measured contrast by clipping the upper levels of the
signal and would negatively affect both the SNR and accuracy of the measurement. For both
techniques, this largely affects shorter source–detector separations where photon flux is high
relative to the maximum count rate of the detector and likely does not greatly affect the estimates
at longer source detector separations, which are already in a photon-starved regime. In addition,
for SCOS, projection of light onto the simulated imaging detector was assumed to be uniform,
which may be difficult to achieve in practice due to the different sizes and shapes of fiber bun-
dles and imaging detectors. Further, a recent work showing very strong results with SCOS for in
vivo measurement of CBF18 noted that the throughput in the SCOS system per-fiber mode uti-
lized was ∼9× lower than the per-fiber mode throughput of DCS. Optical coupling to the detec-
tor array has large implications on the possible performance of SCOS and is not considered in
this work. To examine the above effect in this model implementation, we have simulated an
SCOS system with 9× lower photon flux per mode with the optimal laser pulsing strategy and
show the results in Fig. 9. We include the optimal CNR of 850 and 1064 nm DCS in Fig. 9(c) for
comparison.

This discrepancy between theoretical performance and realistic performance is dependent on
the selection of electrical and optical components that make up a particular system. For the
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simulated DCS systems explored here, we selected a commonly used silicon SPAD detector to
explore what is realistically expected in current DCS systems. For 1064 nm DCS, we used an
SNSPD that allows for optimal measurements and has started to emerge in the DCS field.42,65,66

With a great range of possible imaging detectors, after surveying several possible camera detec-
tors, we aggregated the properties into a CMOS camera with average values for read noise, num-
ber of pixels, frame rate, and quantum efficiency. The selection of these properties has great
influence on the outputs of the model. As an example, the reduced photon flux explored in
Fig. 9 could be offset by selecting a camera with a higher quantum efficiency. This highlights
the importance of the selection of the detection chain, which includes the fiber bundle, relay
optics, and the image sensor. In general, we expect these results to reflect the expected perfor-
mance of the techniques explored, and the insights gained through the evaluation of these three
implementations are likely generalizable to a greater range of systems. For longer separation
DCS measurements, the use of a pulsed laser strategy could improve performance without the
increased bulk and spatial resolution impacts of a multi-source design. The use of the pulsing
strategy is essential to elevate the performance of SCOS, as optical losses through the system
could reduce the instantaneous photon flux to a detrimental level for long source–detector sep-
aration measurements. Further, although single channel measurements were considered in this
work, the laser pulsing strategies are beneficial to multi-channel systems employed for tomo-
graphic imaging as well. Due to the opportunity for temporal multiplexing of spatial emission
positions, for speckle-based imaging, the use of a pulsed strategy can allow for improved photon
flux across many channels. In summary, for SCOS improving photon flux per mode will fully
exploit the potential of this technology to achieve high performance with low-cost detectors.

In some situations, with the recent availability of SPAD arrays,9–11 both SCOS and DCS
measurements could be made with the same detection hardware and the decision as to which
method will maximize CNR for the CBF signal needs to be made. In a simulation with matched
per mode photon flux, quantum efficiency, read noise (0 e−), and pixel number, we found that on
a per pixel basis, DCS provides a greater CNR (∼10× when the optimal laser pulsing strategy is
used) than SCOS across all source–detector separations and would be the preferred technique for
the measurement of CBF in this particular situation (results not shown).

A separate question that could form the subject of future work is what CNR level is needed
for accurate in vivo measurements, which are impacted by physiological noise sources—in a
sense, what is needed to achieve physiological noise limited measurements. While out of the
scope of this paper, it is important to keep the influence of natural biological fluctuations in
mind when comparing pure instrument noise performance, as is done in this work. Further, the
simulations presented here do not include an exploration of the impacts of extracerebral physi-
ology cross-talk. This may be less impactful for functional measurements with well demarcated
functional stimuli, as the techniques to address extracerebral contamination in these controlled
settings are well-established.46 For more naturalistic stimuli or clinical blood flow measurements,

Fig. 9 Comparison of simulated SCOS performance for (a) short and (b) long source–detector
separation as a function of exposure time, and (c) as a function of source–detector separation
at optimal exposure time. The performance at short separation is minimally affected by the reduced
per mode photon flux, though at long separation, the reduction in contrast-to-noise ratio is ∼15×.
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the impact of superficial signal contamination may degrade the contrast-to-noise ratio differently
for DCS and SCOS given that they have different levels of extracerebral sensitivity. Finally, other
practical aspects may impact optimal operating points—for example, DCS measurements allow
continuous tracking of the coherence factor β, which is proportional to the fraction of coherent
photons among the overall photon flux detected. The value of β can fluctuate if environmental
conditions change. For SCOS to compensate, a multiple-exposure time strategy may be needed,
at least intermittently, which would reduce the benefits of frame averaging by the square root of
the number of unique exposures.

To conclude, we hope these simulations can serve as a guide for optimizing the experimental
properties for DCS and SCOS measurements. Realistic operating conditions and other factors
as discussed above should also be taken into consideration when planning optical blood flow
monitoring studies.
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