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Abstract. Motion artifact contamination in near-infrared spectroscopy (NIRS) data has become an important
challenge in realizing the full potential of NIRS for real-life applications. Various motion correction algorithms
have been used to alleviate the effect of motion artifacts on the estimation of the hemodynamic response func-
tion. While smoothing methods, such as wavelet filtering, are excellent in removing motion-induced sharp spikes,
the baseline shifts in the signal remain after this type of filtering. Methods, such as spline interpolation, on the
other hand, can properly correct baseline shifts; however, they leave residual high-frequency spikes. We pro-
pose a hybrid method that takes advantage of different correction algorithms. This method first identifies the
baseline shifts and corrects them using a spline interpolation method or targeted principal component analysis.
The remaining spikes, on the other hand, are corrected by smoothing methods: Savitzky–Golay (SG) filtering or
robust locally weighted regression and smoothing. We have compared our new approach with the existing cor-
rection algorithms in terms of hemodynamic response function estimation using the following metrics: mean-
squared error, peak-to-peak error (Ep), Pearson’s correlation (R2), and the area under the receiver operator
characteristic curve. We found that spline-SG hybrid method provides reasonable improvements in all these
metrics with a relatively short computational time. The dataset and the code used in this study are made available
online for the use of all interested researchers. © 2018 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.NPh

.5.1.015003]
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1 Introduction
Over the past 20 years, functional near-infrared spectroscopy
(fNIRS) has gained much attention as an inexpensive and port-
able imaging technique that can noninvasively monitor brain
function.1–4 The technique is relatively robust to motion artifacts
when compared to other imaging modalities, such as fMRI, and
thus is a suitable technique for the research and real-life appli-
cations that involve excessive motion, such as walking, music
performance, dancing, verbal communication or the study of
infants and children.5–7 Nonetheless, motion-induced artifacts
still arise in the fNIRS signal during such tasks, and thus,
the correction of motion artifacts is still an active research area.

fNIRS measurements consist of a source that emits light
through the tissue and a detector that receives light that back-
scatters from the tissue.1,4 Any head or skin movement can
cause decoupling between the optode and the scalp, which
results in abrupt changes in the amplitude of the received signal.
These effects may cause different types of motion artifacts,
such as high-frequency spikes or baseline shifts in the intensity

signal—the latter happens in cases, where the optode settles on
a different location after the motion. Besides, slow head move-
ments can also cause low-frequency motion artifacts.8,9 There-
fore, motion artifacts have a broad range of frequencies, which
cannot be easily corrected just by frequency filtering without
affecting the hemodynamic response function (HRF) estimation.

Ideally, motion artifacts should be avoided in the first place
using various methods such as by stabilizing the optodes by
gluing them on the scalp10 or using a mechanical mounting
structure to carry the weight of the optodes.11,12 Auxiliary mea-
surements, such as accelerometer, can also be used to regress
out the motion artifacts from the fNIRS signal during
postprocessing.13–15 However, these methods are not always
available in the experimental setup. Thus, various motion detec-
tion and correction techniques have been proposed.16–20

Motion artifacts are usually characterized by rapid signal
changes larger in magnitude than the hemodynamic changes.
Motion detection methods generally rely on user-defined
input parameters to set a threshold for motion artifacts. By
applying user-defined thresholds to various aspects of the signal,
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such as moving standard deviation time series,19 changes in
absolute signal amplitude, or changes in the standard deviation
of the data,20 one can obtain the temporal epochs that are most
likely contaminated by motion artifacts. Relying on user inputs
introduces subjectivity into the detection of motion artifacts.
Moreover, ideal parameters may change from one dataset to
another. Ideally, the detection algorithm should objectively
determine a threshold obtained directly from the signal itself
based on deviations due to real physiological variations.

Motion correction algorithms used in the fNIRS community
are rather broad. The simplest approach is to discard the artifact
polluted trials from the analysis. This approach may not be ideal
in cases where there are only a small number of trials.21 Other
widely used motion correction algorithms, which do not require
any additional measurements, are principal component analysis
(PCA),22 targeted PCA (tPCA),20 wavelet filtering,18 correla-
tion-based signal improvement (CBSI),23 and movement artifact
reduction algorithm (MARA).19 PCA is very efficient when
motion is the main source of variance in the signal but it requires
multiple channels and also tends to overcorrect the signal.22 To
avoid overcorrection, tPCA was developed to only correct the
preidentified epochs with motion artifacts.20 The CBSI method
assumes that HbO and HbR are always negatively correlated and
become positively correlated only when there is a motion arti-
fact. However, this assumption may not always hold, for exam-
ple, during certain developmental stages or under abnormal
brain physiology. The MARA method, which is also known
as spline interpolation method, models the motions using spline
interpolation and then subtracts them from the original signal. It
is a fast and simple approach that corrects only motion artifact
segments and is better at correcting baseline shifts than cor-
recting high-frequency spikes. The method relies on the correct
identification of motion artifact segments.19 Wavelet filtering is
based on decomposing the data into wavelet coefficients.18 The
outliers in the distribution of wavelet coefficients are assumed to
reveal the presence of an artifact. Wavelet filtering is very effec-
tive in removing spikes but not in removing baseline shifts or
low-frequency oscillations. In addition to wavelet filtering, there
are some other denoising methods, such as Savitzky–Golay
(SG) filtering and robust locally weighted regression and
smoothing (Rloess). The SG method is a least square smoothing
filter,24 which substitutes each value of the signal series with a
new value obtained from polynomial fitting to the successive
subsets of adjacent data points. It has been previously used
to denoise fNIRS signal.25,26 Rloess combines weighted linear
least squares regression with the flexibility of nonlinear
regression.27 In several fNIRS studies, Rloess has been used
as a smoothing filter in data preprocessing.28–30

An ideal motion artifact method should have both an objec-
tive motion detection algorithm based on the deviations from
real physiological variations, such as heart beat, and also should
be able to deal with different types of motion artifacts, i.e., base-
line shifts, high-frequency spikes, and slow motions. Each
method mentioned already has its own strengths and weak-
nesses. In this work, we aimed to come up with an optimum
approach that gathers the strengths of the existing methodolo-
gies for motion detection and correction. The new hybrid
method first detects the motion artifacts based on the deviation
from heartbeat variations and then corrects them based on their
type, e.g., spline interpolation method for correcting baseline
shifts followed by SG denoising algorithm for spike correction.
To compare our proposed method with other methods, we added

a synthetic HRF to the raw signal and then recovered the HRF
after the application of each motion correction algorithm. The
extracted HRFs were then compared to the true HRF by the
following metrics: mean-squared error (MSE), peak-to-peak
error (Ep), Pearson’s correlation (R2), and the area under the
receiver operator characteristic (ROC) curve (AUC).

2 Materials and Methods
The two datasets and the code used in this paper are made avail-
able online at Ref. 31 and the motion correction algorithms are
implemented in the developer’s version of the HOMER2 soft-
ware, which is downloadable at Ref. 32. Please see the details of
the datasets and the algorithms as follows.

2.1 Combined Spline Interpolation and Savitzky–
Golay Filtering Method

A schematic diagram of the processing steps for the proposed
method is shown in Fig. 1. The details of each block are
described in the following sections.

2.1.1 Motion artifact detection algorithm

The intensity signal (I) is first low-pass filtered with a cut-off
frequency of 2 Hz (Ilpf ). Then, a Sobel filter (½−1 0 1�),

Fig. 1 The block diagram of the proposed method, I lpf represents the
low pass filtered intensity signal (I).
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which is a discrete differentiation operator,33 is used to compute
the approximation gradient of Ilpf :

EQ-TARGET;temp:intralink-;sec2.1.1;63;730G ¼ convolutionð½−1 0 1�; IlpfÞ:

As motions create outliers in the gradient signal (G), we can
identify them by finding outliers in G. The outliers are found by
dividing the data into three equal parts. The values that divide
each part are called the first, second, and third quantiles (Q1,
Q2, and Q3). Q1 and Q3 are, respectively, the middle value
in the first and second half of the rank-ordered G dataset. Q2
is the median value in the set. The interquartile range (IQR)
is equal to Q3 minus Q1. The outliers are observations that
fall below Q1 − 1.5*IQR or above Q3 + 1.5*IQR. Also, the
standard deviation of the signal is extracted by sliding a window
with a length of 1 s. Then, the outliers in the standard deviation
of the signal are also detected by the same procedure applied on
gradient. The unions of all detected outliers are considered as
motion artifact.

2.1.2 Detection of baseline shifts

After finding all of the motion artifacts in the data including
the baseline shifts, high-frequency spikes, and slow motions,
as described already, we extracted the baseline shifts among
them as follows. We first obtained the amplitude variation in
the motion-free part of the signal (obtained using the algorithm
in Sec. 2.1.1) by sliding a window with a length of 0.5 s, approx-
imately half of the cardiac cycle period, in order to detect
the maximum amplitude variation due to heart rate. Then, the
maximum amplitude change in the motion-free signal is set
as the threshold for finding baseline shifts. In other words,
the detected motions higher than the heart beat oscillations
are considered as baselines shifts. The baseline shifts detected
are corrected by using spline interpolation method, as described
in Sec. 2.1.4. After correcting the baseline shifts, the data with
the remaining high-frequency spikes are fed to the SG
(or Rloess) denoising algorithm. Also, spike type motions
longer than 0.5 s (slow motion) are corrected by spline interpo-
lation method as the denoising methods cannot remove them
perfectly.

2.1.3 Signal-to-noise ratio

When the signal-to-noise ratio (SNR) of the data is poor, motion
detection algorithms fail to find the motion artifacts and thus
applying spline interpolation method to correct the baseline
shifts results in new baseline shifts. To avoid this problem,
we first calculated the SNR of the motion-free part of the signal
(S) and then applied a predefined threshold (SNR ¼ 3) on the
SNR. We have chosen this threshold as we were able to extract
the heart beat variation in the signal when the SNR of the signal
was higher than 3. While the signals with high SNR (SNR > 3)
are fed to the spline interpolation algorithm followed by SG
denoising, the signals with low SNR (SNR < 3) are corrected
by SG denoising only. The SNR was calculated as follows:

EQ-TARGET;temp:intralink-;sec2.1.3;63;144SNR ¼ meanðSÞ∕stdðSÞ:

2.1.4 Spline interpolation method

In this method, the motion artifact epoch is modeled by a cubic
spline interpolation and the result is then subtracted from the
original signal to get the denoised segment. Since the spline

interpolation creates different signal levels between the original
and the denoised signal, each segment needs to be shifted by
a value defined with respect to its mean value and the mean
value of the previous segment to reconstruct the whole time
series. The accuracy of the interpolation depends on choosing
a proper value for the parameter p in the range of [0, 1],
which defines the degree of spline function. For p ¼ 1, the inter-
polation will be a cubic spline, while for p ¼ 0, the interpolation
will be least-squares straight line. In this study, we used
p ¼ 0.99, which has been suggested in previous studies.19,21 We
used the hmrMotionArtifactbyChannel function in HOMER2 to
detect motion contaminated parts of the signal34 (parameters
used for the first dataset: SDthresh = 20, AMPthresh = 5,
tMotion = 0.5 s, tMask = 0.9 s and for the second dataset:
SDthresh = 30, AMPthresh = 5, tMotion = 0.5 s, tMask = 0.9 s).

2.1.5 Savitzky–Golay filtering

SG filtering, also known as a digital polynomial filter or least
square smoothing filter, is a digital smoothing filter that substi-
tutes each value of the signal series with a new value, which is
obtained from a polynomial fitting to the successive subset of
adjacent data points.24 The fitting is performed by the linear
least squares fitting to 2nþ 1 neighboring points, while n
can be equal or greater than the order of the polynomial. The
more neighbors used in the averaging process, the smoother
the signal becomes. Least squares smoothing suppresses
noise while keeping signal information. We used n ¼ 300
(2nþ 1 ¼ 601) for SG (note that our data were sampled at a
rate of 50 samples∕s). The parameter 2nþ 1 should be less
than the length of HRF; otherwise, it can smooth out the
HRF itself.

2.2 Wavelet Filtering

In wavelet filtering, the discrete wavelet transform is used to
decompose the signal into multiple levels of scaling and wavelet
coefficients.18 The level of decomposition is based on the log-
arithm of the signal length. As the spikes have high-frequency
content in comparison to the hemodynamic response, the wave-
let coefficients higher than level 4 are considered as high-fre-
quency components. Therefore, by finding outliers in levels
higher than 4 and setting those to 0 before the inverse discrete
wavelet transform should remove the spikes. In this study, the
parameter IQR ¼ 1.5 is used for finding the outliers in each
wavelet decomposition level.

2.3 Robust Locally-Weighted Regression and
Smoothing Scatterplots

Rloess is a nonparametric regression technique that combines
much of the simplicity of linear least squares regression with
the flexibility of nonlinear regression (second-degree polyno-
mial model) models in a k-nearest-neighbor-based metamodel.27

In this method, the fitted value xk, k ¼ 1; : : : ; n for each xi,
i ¼ 1; : : : ; n (where n is the length of data) is the value of a
polynomial fit to the data by using weighted least squares.
The weight of the least squares depends on the inverse of the
distance between xi and xk. Hence, the weight for xi is large
if xi is close to xk and is small if it is not. A zero weight is
assigned to the data outside six mean absolute deviations.
This robust fitting guards against outlier points, which are dis-
torting the smoothing procedure.27 The best value of the span for
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Rloess is a value that removes the spike while keeping the fre-
quency of the HRF (<0.5 Hz). In this study, we used R ¼ 0.02

for the Rloess method.

2.4 Targeted Principal Component Analysis

PCA uses a linear orthogonal transformation technique to con-
vert the signal time-course among all N channels into a set of N
uncorrelated variables. The eigenvalues and eigenvectors are
extracted from the covariance matrix of measurements. As
the motions constitute the majority of the variation in the signal,
the larger eigenvalues are assumed to represent the variance
caused by motion artifacts. So, by removing the first k eigen-
values, it will result in removing a specific percentage of the
variance in the signal.21,22

Applying PCA to a selected set of data points that are
assumed to have motion artifact will reduce the risk of eliminat-
ing the physiological variations in the motion-free part of the
signal.20 The prerequisite for this method is the identification
of motion artifacts. The signal change within a certain time
period (tMotion) is considered a motion artifact if the amplitude
or standard deviation in that time period exceeds a predefined
threshold (AMPthresh and SDthresh, respectively). After
removing 97% of the variance in the motion-detected part of
the signal, the signal is stitched back to the original signal by
a shifting procedure. This process was repeated two more
times to detect any remaining motion artifacts. The parameters
of this algorithm were set to their effective value as reported in
previous studies.20 Motion detection parameters were the same
as spline interpolation method: for the first dataset: SDthresh =
20, AMPthresh = 5, tMotion = 0.5 s, tMask = 0.9 s and
for the second dataset: SDthresh = 30, AMPthresh = 5,
tMotion = 0.5 s, tMask = 0.9 s. The motion detection in the
tPCA-SG method was done with the approach introduced in
Sec. 2.1.1.

2.5 Correlation-Based Signal Improvement

The CBSI method is based on the hypothesis that HbO and HbR
are negatively correlated, and they only become positively cor-
related when a motion artifact occurs.23 So, this method is based
on two assumptions: (1) the true HbO and HbR (x0 and y0)
should be negatively correlated (x0 ¼ −βy0) and (2) the corre-
lation between the true HbO and the motion artifact (F) should
be close to 0. The measured HbO and HbR signal (x and y) are
modeled as follows:

EQ-TARGET;temp:intralink-;sec2.5;63;253x ¼ x0 þ
stdðxÞ
stdðyÞ � F þ Noise y ¼ y0 þ F þ Noise;

where std is the standard deviation of the signal. Then, by
applying the two aforementioned assumptions on the model
and considering α ¼ β, the following corrected signal can be
obtained:

EQ-TARGET;temp:intralink-;sec2.5;63;164x0 ¼
1

2

�
x −

stdðxÞ
stdðyÞ � y

�
; y0 ¼ −

stdðyÞ
stdðxÞ � x0:

Please note that the corrected signals “x0” and “y0” do not
represent HbO and HbR and are simply a linear combination of
measured HbO and HbR signals.

2.6 fNIRS Datasets

In this study, two separate datasets are used to evaluate the per-
formance of the proposed method. The study was approved by
Massachusetts General Hospital (MGH). The methods were car-
ried out in accordance with the guidelines and regulations of the
Institutional Review Board of MGH. A written consent form is
obtained from each subject.

The first dataset was obtained from seven healthy adults by
using a TechEn CW6 system (Medford, Massachusetts). The sub-
jects were asked to perform the following movements to create
motion artifacts throughout the 6-min recording: reading aloud,
nodding their head up and down, nodding sideways, twisting
upper body right, twisting upper body left, shaking head rapidly
from side to side and raising their eyebrows. The probe equipped
with 6 laser sources and 10 long-distance detectors resulted in 14
channels of data (30 mm separation; Fig. 2). For further details
about the dataset, please refer Ref. 10. Dataset II was acquired
from five healthy subjects during resting state by using a
TechEn CW6 system (Medford). The data contained a minimum
number of artifacts to test the impact of motion correction on data
with few motion artifacts. The probe consisted of 15 sources, 18
long separation detectors, and 14 short separation detectors that
are located 30 and 8 mm away from the sources, respectively. The
sampling frequency for both dataset is 50 Hz.

2.7 Processing Stream for Hemodynamic Response
Function Estimation

A synthetic HRF was generated in the raw NIRS data by intro-
ducing a signal change of 1% from baseline for the 690 nm sig-
nal and 2% for 830 nm signal, resulting in a 0.6 μM increase in
HbO and 0.2 μM decrease in HbR with a pathlength factor of 6
for both wavelengths.35,36 The simulated HRF was a gamma
function, which peaks around 6 s and lasts for 16 s. The
HRF interstimulus interval ranged from 5 to 10 s, which pro-
vided 17 to 19 stimuli during a 6.5-min recording. About 25
different random stimulus onsets were created and convolved
with the true HRF. The noisy channels lower than 80 dB and
higher than 140 dB were pruned from further processing.
(Please note that for our NIRS system, the SNR is typically
less than 10 when the signal is below 80 dB, and the signal sat-
urates above 140 dB.) The intensity data were then converted
into optical density (OD) and then the proposed motion artifact
detection algorithm was applied to the OD time-series. The
identified baseline shifts and slow motion artifacts were

Fig. 2 The schematic view of the optical probe for (a) dataset I and
(b) dataset II. The red and blue circles indicate the position of sources
and detectors, respectively. The sources are named by yellow letters.
The white lines indicate source–detector pairs.
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corrected by using the hmrMotionArtifactSpline function in
HOMER234 and the spikes were removed using SG (MATLAB
function: sgolayfilt) for the spline-SG method or were removed
using Rloess (MATLAB function: smooth) filters for the spline-
Rloess method. The data were then low-pass filtered with a cut-
off frequency of 0.5 Hz. Finally, the HRF was estimated using a
general linear model (GLM) with short separation regression.
The GLM method uses the least square method to estimate
the weights of consecutive temporal basis functions. We used
Gaussian basis functions with a standard deviation of 0.5 s
and separated means by 0.5 s as done in our previous studies.37

To correct the drift, we modeled the baseline drift with a third
order polynomial fit.

2.8 Evaluation Criteria

The following four metrics were used to compare the true HRF
with the recovered HRF after the application of each motion

correction algorithm: (1) R2, (2) MSE, (3) Ep, and (4) AUC.
The R2 metric is obtained using the corr function in
MATLAB (MathWorks Inc., Natick, Massachusetts). The
MSE and Ep are defined as follows:

EQ-TARGET;temp:intralink-;sec2.8;326;708

MSE ¼ k dHRF − HRFk2
kHRFk2 × 100;

Ep ¼
k dHRFp − HRFpk2

kHRFpk2
× 100;

where HRF and dHRF represent the true and estimated HRF,
respectively, with the subscript p designating the peak amplitude.
The MSE and Ep were normalized by dividing with the corre-
sponding amplitude of the true HRF. ROC curves were obtained
by plotting the true-positive rate against the false-positive rate
using the t-statistic of the HRF estimation as the threshold for
detection. This is done by taking the mean of the t-values
obtained from each of the 25 different stimulus paradigms.

Paired student’s t-tests were used to evaluate statistically sig-
nificant differences between motion correction algorithms. For
statistical analysis, multiple comparison correction is applied
using Benjamini–Hochberg method with a false discovery
rate of 0.05.38

Fig. 3 (a) An example of an OD change time course at 690 nm con-
taminated by three types of motions: baseline shifts (green), high-fre-
quency spikes (pink), and slow drifts (violet). (b) The baseline shifts
and slow drift motions are corrected by spline interpolation method
and (c) spikes are corrected by SG denoising.

Fig. 4 (a) OD change at 690 nm from a single channel with no syn-
thetic HRF with baseline shifts (green), high-frequency spikes (pink),
zoomed out data (b and c) before correction (black) and after correc-
tion by spline (red), tPCA (green), tPCA-SG (brown), wavelet (cyan),
CBSI (dark blue), SG (violet), spline-SG (magenta), Rloess (dark
gold), and spline-Rloess (silver).
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3 Results
Figure 3 depicts an example of motion detection and correction
by the proposed spline-SG algorithm. As can be seen in
Fig. 3(a), the selected channel is contaminated by all three
types of motion artifacts, i.e., baseline shifts, spikes, and
slow drift artifacts highlighted with different color coding.
The corrected signal after applying spline interpolation method
on baseline shifts and the denoised signal after applying the SG
filtering algorithm are shown in Figs. 3(b) and 3(c), respectively.

To show the effect of different motion correction techniques,
a highly motion-contaminated signal is shown before and after
being corrected with spline interpolation, tPCA, tPCA-SG,
CBSI, wavelet, SG, spline-SG, Rloess, and spline-Rloess

motion correction algorithms (Fig. 4). As shown in Figs. 4(b)
and 4(c), wavelet smoothing and the SG methods corrected
the high-frequency spikes; however, they were ineffective
with baseline shifts. On the other hand, the tPCA, CBSI, and
spline methods left residuals at the beginning and the end of
motion artifact epochs. The amplitude of this residual was high-
est after applying spline interpolation method. The Rloess
method showed a better performance than wavelet and SG
by completely removing the spikes without propagating base-
line shifts. The hybrid methods, spline-SG, tPCA-SG, and
spline-Rloess show the best performance among them all in
terms of correcting baseline shifts and high frequency spikes.
Using spline or tPCA first has removed all baseline shifts and

Fig. 5 The true and recovered HRFs are shown for different channels from datasets I and II. The shaded
areas represent standard deviation.
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slow drifts and the remaining spikes were successfully removed
by SG or Rloess.

3.1 Performance of the Motion Correction
Algorithms for Improving HRF Estimation

To compare the proposed spline-SG method with the existing
methods, synthetic HRFs were first added to the raw intensity
signal and then recovered after each motion correction algo-
rithm. The HRF recovered at different channels is shown as
an example in Fig. 5. The first two rows show channels from
dataset I, which is highly contaminated by motion artifacts.
For the specific examples, spline, wavelet, tPCA, Rloess, and
CBSI methods resulted in HRFs with larger deviations from
the true HRF while the amplitude of the recovered HRF after
spline-SG, spline-Rloess, and tPCA-SG was closer to the true
HRF. For dataset II, which has fewer motion artifacts compared
to dataset I, most of the methods showed reasonable results
(Fig. 5). The hybrid methods were also more effective in this
dataset by producing smoother HRFs with acceptable amplitude
and correlation compared to the other methods.

We have evaluated the performance of each method using
five different metrics: (1) the coefficient of determination
(square of Pearson’s correlation coefficient, R2), (2) the
MSE, (3) the Ep, (4) the AUC, and (5) the total processing
time. TheMSE, Ep, and R2 values are averaged over all subjects,
channels, and different stimulus paradigms. The AUC values are
measured over the subjects. The results of MSE, Ep, R2, and
AUC for datasets I and II are summarized in Tables 1 and 2
and Figs. 6 and 7. The statistics are provided in Table 3.

For dataset I, all motion correction algorithms improved the
recovered HRF in comparison to no correction (Table 1 and
Fig. 6). While spline-SG, spline-Rloess, and tPCA-SG methods
performed better than the rest in terms of Ep and MSE, Rloess,
spline-SG, and spline-Rloess have shown the best correlation
with the true HRF. Rloess, spline-Rloess, spline-SG, and
CBSI methods produced higher AUC values for the ROC curves

compared to the rest. The wavelet, Rloess, and spline-Rloess
methods had the longest processing time.

Overall, the mean Ep andMSEwere lower and R2 was higher
in dataset II compared to dataset I, as this second dataset
involved fewer motion artifacts than the first one. In this dataset,
the denoising algorithms, such as wavelet, SG, tPCA-SG,
spline-SG, and spline-Rloess, resulted in better Ep, MSE, and
R2 than spline and tPCA (Table 2 and Fig. 7). SG and
spline-SG produced the lowest Ep and MSE, while the CBSI
method had the highest correlation and AUC compared to
the other algorithms. For both datasets, spline-SG was the opti-
mum method among them all with considerable improvement in
all metrics and a relatively short processing time.

For dataset I, the improvement in Ep, MSE, and R2 obtained
after spline-Rloess was statistically better compared to all other
algorithms [paired t-test, p-value < 0.01; see Table 3(a), second
row]. The spline-SG was second to it in terms of performance
[Table 3(a), first row]. For the second dataset, SG alone and
spline-SG methods outperformed the rest of the methods [paired
t-test, p-value < 0.01; Table 3(b)]. There was no significant dif-
ference between mentioned algorithms in terms of AUC.

4 Discussion
In this study, we sought the optimum algorithm for motion
detection and correction for fNIRS data. In order to do this,
we have introduced a motion detection algorithm, which is
solely based on the variation in the NIRS signal and thus
does not require input from the user. The detection algorithm
defines the baseline shift motion artifacts by comparing the
deviation in the signal with real physiological fluctuations,
namely the heartbeat. We have combined this motion detection
algorithm with an ideal combination of existing methods, such
as tPCA-SG, spline-SG, and spline-Rloess. In order to assess the
performance of the proposed new approach, we have compared
it with the wavelet, spline, tPCA, and CBSI methods, which are
the most common methods in fNIRS data processing.

Table 1 MSE, Ep,R2, and AUC values for dataset I from different motion reduction algorithms and no correction. The processing time is calculated
for 14 channels (6.6 min of recording with 50-Hz sampling rate) on a 3.4-Hz CPU running windows 7. The bold values are the best values among all
algorithms. The proposed method is highlighted in italics.

Dataset I MSE × 104 Ep × 104 R2 AUC Processing time (s)

No correction 2.26� 0.38 12.58� 2.34 0.68� 0.02 0.87� 0.03 —

Spline 1.59� 0.45 8.75� 2.71 0.73� 0.03 0.89� 0.02 0.8

Wavelet 1.22� 0.28 6.96� 1.71 0.73� 0.03 0.88� 0.03 135

CBSI 2.23� 0.40 13.48� 2.60 0.77� 0.02 0.91� 0.03 0.2

tPCA 1.14� 0.27 7.30� 1.98 0.71� 0.03 0.85� 0.03 1.8

tPCA-SG 0.89� 0.21 5.50� 1.35 0.74� 0.02 0.85� 0.03 14

SG 1.50� 0.31 9.32� 2.28 0.74� 0.03 0.87� 0.02 0.08

Spline-SG 0.65 ± 0.17 4.20 ± 1.18 0.79 ± 0.02 0.89 ± 0.02 6

Rloess 1.30� 0.33 8.19� 2.27 0.79� 0.02 0.90� 0.02 764

Spline-Rloess 0.60� 0.16 3.90� 1.13 0.80� 0.02 0.89� 0.02 767
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Table 2 MSE, Ep, R2, and AUC values for dataset II from different motion reduction algorithms and no correction. The processing time is calcu-
lated for 36 channels (6.6 min of recording with 50-Hz sampling rate) on a 3.4 Hz CPU running windows 7. The bold values are the best values
among all algorithms. The proposed method is highlighted in italics.

Dataset II MSE × 104 Ep × 104 R2 AUC Processing time (s)

No correction 0.75� 0.11 4.34� 0.73 0.79� 0.02 0.88� 0.05 —

Spline 0.73� 0.11 4.24� 0.72 0.79� 0.02 0.89� 0.05 2

Wavelet 0.55� 0.08 2.97� 0.49 0.81� 0.01 0.88� 0.05 529

CBSI 0.54� 0.09 3.39� 0.56 0.84� 0.01 0.84� 0.01 0.6

tPCA 0.76� 0.12 4.31� 0.72 0.74� 0.02 0.85� 0.06 10

tPCA-SG 0.51� 0.07 3.10� 0.54 0.82� 0.01 0.86� 0.07 46

SG 0.45� 0.06 2.53� 0.41 0.83� 0.01 0.88� 0.05 0.1

Spline-SG 0.44 ± 0.06 2.52 ± 0.41 0.83 ± 0.01 0.89 ± 0.05 16

Rloess 0.72� 0.10 4.26� 0.72 0.79� 0.02 0.87� 0.05 1800

Spline-Rloess 0.56� 0.08 3.36� 0.59 0.82� 0.01 0.89� 0.05 1800

(a) (b)

(c) (d)

Fig. 6 (a) MSE, (b) Ep, (c) R2, and (d) AUC values for estimated HRF before (no correction) and after
correcting the motions using tPCA (light blue), spline (dark green), wavelet (orange), CBSI (dark blue),
SG (dark cyan), Rloess (violet), tPCA-SG (khaki), spline-SG (pink), and spline-Rloess (light green) for
dataset I. The bars represent the mean and the error bars symbolize the standard error over all subjects
and stimulus paradigms.
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The wavelet, Rloess, and SG methods are denoising meth-
ods, which are very powerful in removing high-frequency
motion artifacts, but not in correcting baseline shifts or slow
motion artifacts. The Rloess method performed much better
compared to SG and wavelet in terms of following the trend
of the original signal in time periods, where there are baseline
shifts. The method along with wavelet, however, has the draw-
back of a high computational cost. The proposed approach,
spline-SG, deals well with both baseline shifts as well as
high-frequency spikes by combining the strengths of each
method. The method first applies a spline interpolation method
to correct the baseline shifts. The signal is then passed to the SG
denoising algorithm for the correction of high-frequency spikes.
This way, SG does not have to deal with baseline shifts and thus
produces better results. Moreover, the hybrid spline-SG method
does not have the disadvantage of long processing times as the
Rloess method or spline-wavelet combination (not shown here),
which makes it the optimum method among the existing correc-
tion algorithms. The smoothing parameter for the spline-SG
method though should be carefully chosen. It should allow
the suppression of high-frequency spikes while keeping the
slower variations in the signal that can correspond to a hemo-
dynamic response.

Our performance metrics, i.e., the R2, MSE, Ep, and AUC for
the ROC curve, were based on the estimation of the HRF, which
is synthetically added to the raw signal. We also added the
processing time as a metric to evaluate the practicality of the
method. Our results show that the spline-SG approach produced
statistically better results in HRF recovery in terms of Ep, MSE,
R2, and AUC compared to the other methods for both datasets.
Considering the good performance in HRF estimation metrics
and the short processing time, we suggest the use of the
spline-SG method for motion correction in fNIRS data analysis.

5 Conclusion
Motion artifact correction is often an essential preprocessing
step during HRF estimation, particularly during experimental
paradigms in which subjects are engaged in natural behaviors.
In this work, we introduced a new way of motion artifact detec-
tion and also combined the strengths of the existing methods in
order to optimally deal with all types of motion artifacts. The
proposed approach, spline-SG, provides a suitable solution to
the motion artifact removal problem in fNIRS studies by com-
bining the spline’s powerful baseline shift correction with the
powerful spike correction of SG. The results of this study sug-
gest that the proposed algorithm performs better than the

(a) (b)

(c) (d)

Fig. 7 (a) MSE, (b) Ep, (c) R2, and (d) AUC values for estimated HRF before (no correction) and after
correcting the motions using tPCA (light blue), spline (dark green), wavelet (orange), CBSI (dark blue),
SG (dark cyan), Rloess (violet), tPCA-SG (khaki), spline-SG (pink), and spline-Rloess (light green) for
dataset II. The bars represent the mean and the error bars symbolize the standard error over all subjects
and stimulus paradigms.
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Table 3 The p-values (nonbold) signify significant improvement in Ep, MSE, orR2 using the method in the row over the method in the column. The
p-values in bold, on the other hand, show superiority of the method in the column over the method in the row. All p-values are corrected for multiple
comparisons.

(a) Dataset I

Ep
MSE
Corr Spline-SG Spline-Rloess tPCA-SG SG Rloess Wavelet tPCA CBSI Spline No-correction

Spline-SG — <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

— <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

— <0.01 <0.01 <0.01 — <0.01 <0.01 — <0.01 <0.01

Spline-Rloess — — <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

— — <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

— — <0.01 <0.01 — <0.01 <0.01 <0.01 <0.01 <0.01

tPCA-SG — — — <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

— — — <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

— — — — <0.01 — <0.01 <0.01 — <0.01

SG — — — — <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

— — — — <0.01 — <0.01 <0.01 <0.01 <0.01

— — — — <0.01 — <0.01 <0.01 <0.01 <0.01

Rloess — — — — — <0.01 — <0.01 — <0.01

— — — — — — — <0.01 <0.01 <0.01

— — — — — <0.01 <0.01 <0.01 <0.01 <0.01

(b) Dataset II

Ep
MSE
Corr Spline-SG Spline-Rloess tPCA-SG SG Rloess Wavelet tPCA CBSI Spline No-correction

Spline-SG — <0.01 <0.01 — <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

— <0.01 <0.01 — <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

— <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Spline-Rloess — — <0.01 <0.01 <0.01 <0.01 <0.01 — <0.01 <0.01

— — <0.01 <0.01 <0.01 — <0.01 — <0.01 <0.01

— — <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

tPCA-SG — — — <0.01 <0.01 — <0.01 — <0.01 <0.01

— — — <0.01 <0.01 — <0.01 — <0.01 <0.01

— — — <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

SG — — — — <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

— — — — <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

— — — — <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Rloess — — — — — <0.01 — <0.01 — —

— — — — — <0.01 — <0.01 — —

— — — — — <0.01 <0.01 <0.01 — —
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existing methods with a considerably short processing time.
Thus, we recommend the use of spline-SG method for the cor-
rection of motion artifacts in the NIRS signal.

Disclosures
Competing financial interests: D. A. B. is an inventor on a tech-
nology licensed to TechEn, a company whose medical pursuits
focus on noninvasive optical brain monitoring. His interests
were reviewed and are managed by Massachusetts General
Hospital and Partners HealthCare in accordance with their con-
flict of interest policies.

Acknowledgments
This work was supported by the National Institutes of Health
under Grant No. P41-EB015896.

References
1. D. A. Boas et al., “Twenty years of functional near-infrared spectros-

copy: introduction for the special issue,” Neuroimage 85, 1–5 (2014).
2. A. Villringer and B. Chance, “Non-invasive optical spectroscopy and

imaging of human brain function,” Trends Neurosci. 20(10), 435–
442 (1997).

3. D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical im-
aging of brain activation: approaches to optimizing image sensitivity, res-
olution, and accuracy,” Neuroimage 23(Suppl. 1), S275–S288 (2004).

4. S. Lloyd-Fox, A. Blasi, and C. E. Elwell, “Illuminating the developing
brain: the past, present and future of functional near infrared spectros-
copy,” Neurosci. Biobehav. Rev. 34(3), 269–284 (2010).

5. T. Farroni et al., “Infant cortex responds to other humans from shortly
after birth,” Sci. Rep. 3, 2851 (2013).

6. H. Karim et al., “Functional near-infrared spectroscopy (fNIRS) of brain
function during active balancing using a video game system,” Gait
Posture 35(3), 367–372 (2012).

7. L. A. Tuscan et al., “Exploring frontal asymmetry using functional near-
infrared spectroscopy: a preliminary study of the effects of social anxi-
ety during interaction and performance tasks,” Brain Imaging Behav.
7(2), 140–153 (2013).

8. S. Brigadoi et al., “Motion artifacts in functional near-infrared spectros-
copy: a comparison of motion correction techniques applied to real cog-
nitive data,” Neuroimage 85, 181–191 (2014).

9. F. Scholkmann, A. J. Metz, and M. Wolf, “Measuring tissue hemo-
dynamics and oxygenation by continuous-wave functional near-infrared
spectroscopy—how robust are the different calculation methods against
movement artifacts?” Physiol. Meas. 35(4), 717–734 (2014).

10. M. A. Yücel et al., “Reducing motion artifacts for long-term clinical
NIRS monitoring using collodion-fixed prism-based optical fibers,”
Neuroimage 85, 192–201 (2014).

11. S. M. Coyle et al., “Brain-computer interface using a simplified func-
tional near-infrared spectroscopy system,” J. Neural Eng. 4(3), 219–226
(2007).

12. P. Giacometti and S. G. Diamond, “Compliant head probe for position-
ing electroencephalography electrodes and near-infrared spectroscopy
optodes,” J. Biomed. Opt. 18(2), 027005 (2013).

13. S. G. Diamond et al., “Dynamic physiological modeling for functional
diffuse optical tomography,” Neuroimage 30(1), 88–101 (2006).

14. A. J. Metz et al., “A new approach for automatic removal of movement
artifacts in near-infrared spectroscopy time series by means of acceler-
ation data,” Algorithms 8(4), 1052–1075 (2015).

15. J. Virtanen et al., “Accelerometer-based method for correcting signal
baseline changes caused by motion artifacts in medical near-infrared
spectroscopy,” J. Biomed. Opt. 16(8), 087005 (2011).

16. M. Izzetoglu et al., “Motion artifact cancellation in NIR spectroscopy
usingWiener filtering,” IEEE Trans. Biomed. Eng. 52(5), 934–938 (2005).

17. A. M. Chiarelli et al., “A kurtosis-based wavelet algorithm for motion
artifact correction of fNIRS data,” Neuroimage 112, 128–137 (2015).

18. B. Molavi and G. A. Dumont, “Wavelet-based motion artifact removal
for functional near-infrared spectroscopy,” Physiol. Meas. 33(2), 259–
270 (2012).

19. F. Scholkmann et al., “How to detect and reduce movement artifacts in
near-infrared imaging using moving standard deviation and spline inter-
polation,” Physiol. Meas. 31(5), 649–662 (2010).

20. M. A. Yucel et al., “Targeted principle component analysis: a new
motion artifact correction approach for near-infrared spectroscopy,”
J. Innov. Opt. Health Sci. 7(2), 1350066 (2014).

21. R. J. Cooper et al., “A systematic comparison of motion artifact correc-
tion techniques for functional near-infrared spectroscopy,” Front.
Neurosci. 6, 1–10 (2012).

22. Y. Zhang et al., “Eigenvector-based spatial filtering for reduction of
physiological interference in diffuse optical imaging,” J. Biomed.
Opt. 10(1), 011014 (2005).

23. X. Cui, S. Bray, and A. L. Reiss, “Functional near infrared spectroscopy
(NIRS) signal improvement based on negative correlation between oxy-
genated and deoxygenated hemoglobin dynamics,” Neuroimage 49(4),
3039–3046 (2010).

24. A. Savitzky and M. J. E. Golay, “Smoothing and differentiation of data
by simplified least squares procedures,” Anal. Chem. 36(8), 1627–1639
(1964).

25. N. T. Hai et al., “Temporal hemodynamic classification of two hands
tapping using functional near-infrared spectroscopy,” Front. Hum.
Neurosci. 7, 516 (2013).

26. A. Vrana et al., “Cortical sensorimotor processing of painful pressure in
patients with chronic lower back pain—an optical neuroimaging study
using fNIRS,” Front. Hum. Neurosci. 10, 578 (2016).

27. W. S. Cleveland, “Robust locally weighted regression and smoothing
scatterplots,” J. Am. Stat. Assoc. 74(368), 829–836 (1979).

28. Z. Zhang et al., “The comparisons of cerebral hemodynamics induced
by obstructive sleep apnea with arousal and periodic limb movement
with arousal: a pilot NIRS study,” Front. Neurosci. 10, 403 (2016).

29. L. Corvaglia et al., “Bolus vs. continuous feeding: effects on splanchnic
and cerebral tissue oxygenation in healthy preterm infants,” Pediatr.
Res. 76(1), 81–85 (2014).

30. T. D. Yanowitz et al., “Variability in cerebral oxygen delivery is reduced
in premature neonates exposed to chorioamnionitis,” Pediatr. Res.
59(2), 299–304 (2006).

31. https://www.nitrc.org/projects/fnirsdata/.
32. HOMER2, MGH-Martinos Center for Biomedical Imaging, https://

www.nitrc.org/projects/homer2/.
33. K. Engel, “Sobel operator,” in Real-time Volume Graphics, K. Engel et

al., Eds., pp. 112–114, A K Peters, Ltd., Wellesley, Massachusetts
(2006).

34. T. J. Huppert et al., “HomER: a review of time-series analysis methods
for near-infrared spectroscopy of the brain,” Appl. Opt. 48(10), D280–
D298 (2009).

35. M. Cope and D. T. Delpy, “System for long-term measurement of cer-
ebral blood and tissue oxygenation on newborn infants by near infra-red
transillumination,” Med. Biol. Eng. Comput. 26(3), 289–294 (1988).

36. D. T. Delpy et al., “Estimation of optical pathlength through tissue from
direct time of flight measurement,” Phys. Med. Biol. 33(12), 1433–1442
(1988).

37. L. Gagnon et al., “Improved recovery of the hemodynamic response in
diffuse optical imaging using short optode separations and state-space
modeling,” Neuroimage 56(3), 1362–1371 (2011).

38. Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate: a
practical and powerful approach to multiple testing,” J. R. Stat. Soc. B
57(1), 289–300 (1995).

Biographies for the authors are not available.

Neurophotonics 015003-11 Jan–Mar 2018 • Vol. 5(1)

Jahani et al.: Motion artifact detection and correction in functional near-infrared spectroscopy. . .

http://dx.doi.org/10.1016/j.neuroimage.2013.11.033
http://dx.doi.org/10.1016/S0166-2236(97)01132-6
http://dx.doi.org/10.1016/j.neuroimage.2004.07.011
http://dx.doi.org/10.1016/j.neubiorev.2009.07.008
http://dx.doi.org/10.1038/srep02851
http://dx.doi.org/10.1016/j.gaitpost.2011.10.007
http://dx.doi.org/10.1016/j.gaitpost.2011.10.007
http://dx.doi.org/10.1007/s11682-012-9206-z
http://dx.doi.org/10.1016/j.neuroimage.2013.04.082
http://dx.doi.org/10.1088/0967-3334/35/4/717
http://dx.doi.org/10.1016/j.neuroimage.2013.06.054
http://dx.doi.org/10.1088/1741-2560/4/3/007
http://dx.doi.org/10.1117/1.JBO.18.2.027005
http://dx.doi.org/10.1016/j.neuroimage.2005.09.016
http://dx.doi.org/10.3390/a8041052
http://dx.doi.org/10.1117/1.3606576
http://dx.doi.org/10.1109/TBME.2005.845243
http://dx.doi.org/10.1016/j.neuroimage.2015.02.057
http://dx.doi.org/10.1088/0967-3334/33/2/259
http://dx.doi.org/10.1088/0967-3334/31/5/004
http://dx.doi.org/10.1142/S1793545813500661
http://dx.doi.org/10.3389/fnins.2012.00147
http://dx.doi.org/10.3389/fnins.2012.00147
http://dx.doi.org/10.1117/1.1852552
http://dx.doi.org/10.1117/1.1852552
http://dx.doi.org/10.1016/j.neuroimage.2009.11.050
http://dx.doi.org/10.1021/ac60214a047
http://dx.doi.org/10.3389/fnhum.2013.00516
http://dx.doi.org/10.3389/fnhum.2013.00516
http://dx.doi.org/10.3389/fnhum.2016.00578
http://dx.doi.org/10.1080/01621459.1979.10481038
http://dx.doi.org/10.3389/fnins.2016.00403
http://dx.doi.org/10.1038/pr.2014.52
http://dx.doi.org/10.1038/pr.2014.52
http://dx.doi.org/10.1203/01.pdr.0000196738.03171.f1
https://www.nitrc.org/projects/fnirsdata/
https://www.nitrc.org/projects/fnirsdata/
https://www.nitrc.org/projects/fnirsdata/
https://www.nitrc.org/projects/homer2/
https://www.nitrc.org/projects/homer2/
https://www.nitrc.org/projects/homer2/
https://www.nitrc.org/projects/homer2/
http://dx.doi.org/10.1364/AO.48.00D280
http://dx.doi.org/10.1007/BF02447083
http://dx.doi.org/10.1088/0031-9155/33/12/008
http://dx.doi.org/10.1016/j.neuroimage.2011.03.001
http://dx.doi.org/10.2307/2346101

