1 June 1981 Vanadium Dioxide Storage Material
Dayton D. Eden
Author Affiliations +
Abstract
Vanadium dioxide undergoes a semiconductor-metal phase transition at temperature of 340 K. When prepared as a thin film on a suitable substrate, the transition exhibits hysteresis, i.e. the curve describing the state of the film versus temperature is double valued. Here the material is capable of existing in equilibrium in either of two states at the same temperature. Both high writing speed and high spatial resolution are possible, contrary to what one might normally expect from a thermal process. The writing speed is limited by the time taken to deliver the latent heat of transition, and the resolution is limited by the diffusion time during which written and unwritten adjacent areas are out of thermal equilibrium. Both of these times are connected, and they along with the latent heat dictate the exposure. Experiments thus far have produced writing times as small as 30 nanoseconds and stored spots of a few microns in size. They by no means represent limits, and writing times of a few nanoseconds and spot sizes down to a few thousand angstroms appear feasible. A discussion will be given detailing the material as a high density recording medium including laser beam writing requirements, spot sizes, stored contrast, and signal-to-noise ratio. In addition, information on optical constants, latent heat and other physical parameters will be given along with some past results concerning long term storage, cycling, lifetime, and reciprocity.
Dayton D. Eden "Vanadium Dioxide Storage Material," Optical Engineering 20(3), 203377 (1 June 1981). https://doi.org/10.1117/12.7972726
Published: 1 June 1981
Lens.org Logo
CITATIONS
Cited by 13 scholarly publications and 2 patents.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Vanadium

Data storage

Diffusion

Semiconductors

Signal to noise ratio

Spatial resolution

Thin films

Back to Top