You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
1 October 2005Comparative analysis of clutter removal techniques over experimental IR images
Infrared surveillance systems have the task of detecting small moving targets having low signal-to-clutter ratio. Detection is usually accomplished by (1) removing the background structures from each frame and (2) integrating the target signal over consecutive frames of the residual sequence. We focus on the analysis of background removal techniques based on linear and nonlinear two-dimensional filters such as the window average, median, max-median, and max-mean. We introduce two modified versions of the window average and max-mean filters, where an appropriate guard window is used to reduce the bias due to the target. We define an ad hoc methodology to compare the different background estimation techniques on the basis of their ability to suppress background structures and to preserve the target of interest. Finally, we present and discuss the results obtained over two experimental IR sequences containing a highly structured background.
The alert did not successfully save. Please try again later.
Nicola Acito, Giovanni Corsini, Marco Diani, G. Pennucci, "Comparative analysis of clutter removal techniques over experimental IR images," Opt. Eng. 44(10) 106401 (1 October 2005) https://doi.org/10.1117/1.2113147