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Abstract. We explore the application of photonic band gaps
�PBGs� in photonic crystal structures to propose the design
of an ultracompact PBG polarizer. The existence of complete
PBGs in certain photonic crystal structures and the variation
introduced in the PBGs by the creation of defects has been
utilized to design a PBG polarizer at 1.55 �m with a degree
of polarization equal to 1 leading to the formation of a super
polarizer. © 2006 Society of Photo-Optical Instrumentation Engineers.
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1 Introduction

Photonic crystals �PhCs�, also known as photonic band gap
�PBG� structures, which have gained worldwide interest in
the recent past, are periodic structures belonging to a new
class of artificial materials that allow one to manipulate the
flow of light.1–4 After the first proposal of PhCs by John
and Yablonovitch, research and development in this field is
taking place at a feverish pace because of the tremendous
potential these structures hold.5–8 Because PBG structures
allow strong control over the propagation of light, some of
the most exciting applications of these structures are based
on the functionalities through the incorporation of defects
in periodic lattice leading to the design of PhC
heterostructure-based PBG waveguides and devices. De-
fects influence the photonic band structure of the PhC and
can result in the flow or confinement of light along particu-
lar pathways in the crystal. Moreover, PBGs in these struc-
tures are polarization sensitive.

These properties of PhC structures have been used to
design various polarization sensitive devices, such as polar-
ization splitters, multiplexers, demultiplexers, and two-
dimensional PhC lasers.9–14

Polarization discriminating optical elements are widely
used in fiber optic applications and in quantum information
processing. An important device in this class is the polar-
izer, which selectively attenuates light in one state of po-
larization while transmitting the orthogonal state of polar-
ization.

In this letter, we envisage the existence of PBG as well
as complete PBG �CPBG� and their polarization sensitivity
to design PBG polarizer. Earlier polarizers that have been
reported are based completely on the pseudo–band gaps
exhibited by PhC structures.15,16 The PBG computations
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ave been done using the plane wave expansion �PWE�
ethod and the polarizer has been modeled using the finite

ifference time domain �FDTD� method.

Design Parameters

o design a PBG polarizer, we consider a PBG structure
omposed of a honeycomb lattice of Si �n=3.42� rods in air
ith lattice constant a=0.885 �m. We first study the varia-

ion of complete PBG by varying the normalized rod radii
/a, where r is the radius of the rods. We select a PBG
tructure composed of honeycomb lattice of Si rods in air
ith normalized rod radius r /a=0.24 to have a maximum

ange of CPBG. Figures 1�a� and 1�b� show the photonic
and diagrams for transverse electric �TE� and transverse
agnetic �TM� polarizations for this PhC structure, ob-

ained using the PWE method. This PBG structure exhibits
PBG for normalized frequency range 0.53711�a /�
0.58793.
Further, an input waveguide is formed by creating a lin-

ar waveguide by removing two rows of dielectric rods.
ince the considered PBG structure possesses the CPBG,

ight for both TE and TM polarization in the wavelength
ange 1.51 �m���1.65 �m and hence both �TE and
M� polarization states can be guided in the input wave-
uide.

Further, to design a PBG polarizer, we have to design a
hC geometrical heterostructure in such a way that the light
f one polarization is blocked while the light of another

ig. 1 Band diagram for the PBG structure composed of Si rods
ith r /a=0.24 in air in honeycomb lattice �a� for TM mode, and �b�
or TE mode.
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polarization is allowed to pass, so that at the output end, the
wavelength of one polarization is obtained. This property
of the sensitivity of the PBGs to the polarization of light
can be used to design a PBG polarizer. So after the input
waveguide, modifications are made in the PBG structure
such that it exhibits a band gap for either of the two polar-
izations, which overlaps with the CPBG regime.

To, obtain such a structure, we create a linear defect
waveguide in the PhC structure after the input waveguide
by changing the radius of the Si rods in the two rows,
which is followed by an output waveguide formed by re-
moving two rows of the Si rods. Figure 2 shows the sche-
matic diagram of the PBG polarizer.

In order to find the parameters of the defect waveguide,
we investigate the variation of PBGs by changing the ra-
dius of defect rods in the linear defect waveguide using the
PWE method. Table 1 shows the range of the PBGs for the
TE and TM polarizations by changing the radius of the
defect rods.

To design a polarizer at �=1.55 �m, the radius of the
defect rods in the linear defect waveguide is chosen to be
0.08a. This defect waveguide supports only TE modes but
exhibits a PBG for TM mode in the range 0.56006�a /�
�0.57243 as evident from Table 1 providing a bandwidth
of 34 nm.

3 Numerical Analysis

The designed PBG polarizer has been modeled using the
FDTD method. Now if at the input end, the light of both the
TE and TM polarizations is launched in the input wave-
guide, then at the output end, the light of TE polarization is
obtained as TE modes are allowed to propagate in the de-
fect waveguide, whereas TM modes are not allowed and
hence are reflected back as shown in Figs. 3�a� and 3�b�.

The dimensions of the PBG polarizer lie in the microme-
ter range as in the present case, the length of the polarizer is
30 �m, which is evident from the snapshots in Figs. 3�a�
and 3�b�. As mentioned earlier, the designed PBG polarizer
provides a bandwidth of 34 nm, which is obtained from the
pseudo-PBG introduced by making the defect waveguide.

The performance of a polarizer is conventionally char-
acterized by the degree of polarization P that is defined as

P =
�ITE − ITM�
ITE + ITM

, �1�

where ITE �ITM� is the intensity of the outgoing TE �TM�
component, which is obtained as 1 as the TM mode is com-

Fig. 2 Schematic v
pletely blocked by the defect waveguide in this case and a
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ence leading to the design of a super polarizer.
The transmittance T of a polarizer is defined here as the

atio of the intensity of the TE mode �in this case� passing
hrough the polarizer �ITE�out�� to the incident intensity of
he TE mode �ITE�in��

=
ITE�out�

ITE�in�
�2�

nd is obtained as 0.74.

the PBG polarizer.

ig. 3 Snapshot of the PBG polarizer at 1.55 �m for TE mode �a�
iew of
nd �b� for TM mode.
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Similarly, by tailoring the radius of the Si rods in the
PhC defect waveguide in PhC, the PBG polarizer can be
designed at the desired wavelength, operational range, and
thereby the desired bandwidth.

4 Conclusion

We have proposed the design of the PBG polarizer by uti-
lizing the PBGs exhibited by PhC structures, which have
been modeled using the FDTD method. The dimension of
the PBG polarizer lies in the micrometer range leading to
the design of an ultracompact polarizer with degree of po-
larization as one and high transmittance. It has also been

Table 1 PBGs for TM and TE polarizations with varying defect radii
as calculated using the PWE method.

Defect
Radius
�rd /a�

Photonic Band Gap
Range for

TM Polarization

Photonic Band Gap
Range for

TE Polarization

0.08 0.54967�a /��0.55829

0.56006�a /��0.57243

0.10 0.54422�a /��0.5542 0.57101�a /��0.5542

0.55476�a /��0.57092

0.12 0.54209�a /��0.55157 0.56919�a /��0.58238

0.55238�a /��0.56914

0.14 0.54074�a /��0.54962 0.56723�a /��0.57824

0.55069�a /��0.56731

0.16 0.53893�a /��0.54684

0.54785�a /��0.56151

0.18 0.55658�a /��0.56482

0.20 0.54352�a /��0.5519 0.56472�a /��0.57933

0.22 0.55597�a /��0.56092 0.5649�a /��0.56686

0.26 0.54065�a /��0.5472

0.55604�a /��0.58878 0.55604�a /��0.58878

0.5889�a /��0.5942

0.28 0.53703�a /��0.54523

0.55274�a /��0.58389 0.55274�a /��0.57606

0.30 0.535�a /��0.54117 0.52651�a /��0.53445

0.54999�a /��0.56447

0.32 0.5673�a /��0.57441 0.59161�a /��0.59899
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hown that by tailoring the radius of the defect rods, one
an design a superpolarizer for the required wavelength.

Further, the polarizer action observed for this PBG po-
arizer using the FDTD method is in accordance with the
and diagrams for the considered structure obtained from
he PWE method.

However, in this letter, we have mainly focused on the
hCs of dielectric columns in air; similar principles may
lso be applied to their counterparts, that is, PhCs, of low
ndex material embedded in a high index background if the
tructure fulfills the PBG requirements.
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