You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
1 May 2008Liquid crystal variable retarder modeling of incident angle response with experimental verification
The nematic liquid crystal variable retarder is a useful device for examining the polarization properties of optical components and material samples as well as for remote sensing applications. The response of the retarder to oblique ray angles is important in applications requiring a finite field of view such as imaging polarimetry. Mueller matrices that describe the response to incident angle are developed in two ways using an extended Jones matrix approach and through an alteration of a standard Stokes Mueller matrix for a retarder. Comparisons of the model results with lab measurements show good agreement, although with some differences due to varying assumptions in the models and nonideal aspects of the actual variable retarder. We provide analytical models that can be applied relatively easily to examine the effects of oblique angles in systems using liquid crystal variable retarders.
The alert did not successfully save. Please try again later.
Xifeng Xiao, David G. Voelz, "Liquid crystal variable retarder modeling of incident angle response with experimental verification," Opt. Eng. 47(5) 054002 (1 May 2008) https://doi.org/10.1117/1.2923742