You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
1 May 2008Recursive error-compensated dynamic eigenbackground learning and adaptive background subtraction in video
We address the problem of foreground object detection through background subtraction. Although eigenbackground models are successful in many computer vision applications, background subtraction methods based on a conventional eigenbackground method may suffer from high false-alarm rates in the foreground detection due to possible absorption of foreground changes into the eigenbackground model. This paper introduces an improved eigenbackground modeling method for videos by recursively applying an error compensation process to reduce the influence of foreground moving objects on the eigenbackground model. An adaptive threshold method is also introduced for background subtraction, where the threshold is determined by combining a fixed global threshold and a variable local threshold. A fast algorithm is then given as an approximation to the proposed method by imposing and exploiting a constraint on motion consistency, leading to about 50% reduction in computations. Experiments have been performed on a range of videos with satisfactory results. Performance is evaluated using an objective criterion. Comparisons are made with two existing methods.