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Abstract. In many machine vision applications, a crucial step
is to accurately determine the relation between the image of
the object and its physical dimension by performing a calibra-
tion process. Over time, various calibration techniques have
been developed. Nevertheless, the existing methods cannot
satisfy the ever-increasing demands for higher accuracy per-
formance. In this letter, an advanced geometric camera cali-
bration technique which employs a frontal image concept and
a hyper-precise control point detection scheme with digital
image correlation is presented. Simulation and real experi-
mental results have successfully demonstrated the superior
of the proposed technique. C©2011 Society of Photo-Optical Instrumen-
tation Engineers (SPIE). [DOI: 10.1117/1.3647521]
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The recent decade has seen tremendous growth in the ma-
chine vision applications as they become the new driving
forces in precision engineering. Many of these applications
highly benefit from the improvements of camera calibration
techniques, which primarily fall into two categories: pho-
togrammetry calibration1 and self-calibration.2 Compared
with the latter which does not use any specific calibration
target, the former usually provides higher accuracy by us-
ing a precisely-constructed calibration target and is therefore
the interest of this letter. A representative photogrammetry
approach is Zhang’s method, which uses a planar pattern as
the calibration target and is well known for its flexibility,
robustness, and low cost.1 This method and its extensions
implemented in the OpenCV library are considered as the
conventional technique in this letter.

The literature in the relevant field addresses two major
sources of error that affect the camera calibration results.
The first one is the imperfection of the calibration target.
Since the assumptions made for the conventional camera
calibration are based on a perfect planar target with ideal
patterns, the imprecision of the calibration target may lead
to inaccurate results.3 The second problem is the uncertainty
in locating the control points directly from the geometries
of the calibration patterns in the captured raw images which
suffers from lens distortion as well as perspective distortion.4
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This letter proposes an advanced geometric camera cali-
bration approach to overcome the aforementioned two prob-
lems without loss of the original advantages of the conven-
tional technique. The proposed technique uses a sophisticated
lens distortion model that takes the radial, tangential, and
prism distortion into account, and achieves a precise local-
ization of the control points with a novel refinement process
using a frontal image concept and an advanced digital image
correlation (DIC) scheme; in addition, the imperfection of
the calibration target can be compensated.

For the ideal pinhole model, assuming that the world coor-
dinate is placed on the calibration target with its surface as the
XY plane, the relation between the three-dimensional world
coordinate of a calibration target point M = [Xw , Yw , Zw ]T

and its corresponding location m = [u, v]T in the image
plane can be expressed as:
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where s is a scale factor; A is the intrinsic matrix, with α
and β the horizontal and vertical focal length in pixel unit, γ
the skew factor, and (u0, v0) the coordinates of the principal
point; R and T are the extrinsic parameters that denote the
rotation and translation relating the world coordinate system
to the camera coordinate system. Due to nonlinear optical
distortion, the above equation is not sufficient for accurate
camera calibration. In spite of the fact that some very com-
plex models exist,5 in practice they induce more instability
rather than accuracy because of the high order distortion
components. Here, the lens distortion is compensated by:

u′ = (1 + a0r2 + a1r4 + a2r6)u + s0r2

+ (p0 + p2r2)(r2 + 2u2),

v ′ = (1 + a0r2 + a1r4 + a2r6)v + s1r2 (2)

+ (p1 + p3r2)(r2 + 2v2),

r2 = u2 + v2,

where (a0, a1, a2), (s0, s1), and (p0, p1) represent the radial,
prism, and tangential distortion coefficients, respectively, (u,
v) denotes the distortion-free pixel location, and (u′, v′) is the
corresponding distorted point. To avoid calculation instabil-
ity during the optimization process, in Eq. (2), (u, v) and (u′,
v′) are usually converted to their normalized terms (xcn, ycn)
and (x ′

cn, y′
cn) by applying the intrinsic matrix A.

Given the locations of the control points in the world
coordinate as Mi and in the image plane as mi j , the calibra-
tion process involves a nonlinear optimization with the cost
function defined as:

S =
k∑

i=1

l∑
j=1

||mi j − P(A,ϕ, r, T , Mi )||2, (3)

where k and l denote the number of control points in the
calibration target and the number of images, respectively,
ϕ = (a0, a1, a2, s0, s1, p0, p1), P denotes the projection of
control points onto the image planes according to Eqs. (1) and
(2), and r is the Rodrigues vector presentation of R.1, 6 The
optimization is performed using the Levenberg–Marquardt
(LM) algorithm.
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The method described above relies on the intrinsic as-
sumption that the control points on the calibration target are
perfectly positioned. In reality, printing imprecision during
calibration pattern fabrication is inevitable, especially for
low-cost hardware systems. To deal with this issue, the pro-
posed technique allows the world coordinates of the control
points to be unknown, and they will be accurately determined
together with the camera parameters. To ensure the unique-
ness of the calibration target during optimization, a geomet-
ric constraint on three noncollinear control points, named
markers, is applied.6 The constraint enforces planarity of the
markers by setting their Z world coordinates to zero, and
requires the distance between any two of the three mark-
ers to be accurately measured to solve for the scale factor.
The markers, normally made at the corners of the calibration
panel, also help determine the orientation of the panel.

An accurate ellipse fitting technique can be employed to
detect the centers of the calibration circles.7 However, as the
control points detected in the raw images suffer from lens
and perspective distortion, their true locations cannot be ac-
curately determined, and this will further lead to calibration
errors. To cope with this issue, a two-step refinement with the
frontal image concept, which is free from lens and perspec-
tive distortion, is employed. The refinement is conducted af-
ter the camera parameters are coarsely determined using the
method described above. The raw images are successively
undistorted by applying Eq. (2) and then reversely projected
to the world coordinate system through using Eq. (1). The
frontal image is generated from a direct scaling of the world
coordinates. It is noteworthy that while the conventional sub-
pixel edge and circle fitting method can be used to detect the
control points in the frontal images, the method is not rec-
ommended because the gradient calculation involved in edge
detection is sensitive to noise and the circle approximation
does not yield high accuracy. On the other hand, as illus-
trated in Fig. 1, the transformation of each image from each
location of the captured calibration board to the frontal image
allows using the DIC concept to accurately locate the position
of each control point by comparing the frontal image with
the synthesized templates. Datta et al.4 achieved subpixel-
location detection of the control points by carrying out a
quadratic fitting in the neighborhood regions based on their
correlation coefficients, but such a peak-finding approach is
less accurate than the iterative schemes.8 Here, the proposed
technique employs a high-accuracy cross-correlation algo-
rithm, and the correlation coefficient function is:6, 8

Fig. 1 The conversion from raw images to frontal images enables
the correlation with the ring templates.

C =
N∑

i=1

[
a f (xi , yi ) + b − g

(
x ′

i , y′
i

)]2
, (4)

where a is a scale factor, b is an intensity offset, and f(xi, yi)
and g(x ′

i , y′
i ) denote the intensity values at the i–th pixel in

the template and frontal images, respectively. The template
pattern is a square subimage of N pixels with its center as
the center of the circular target point. Denoting the subimage
center as (x0, y0) and its shift amount between two subimages
as (u, v), the correlation shape function considering both
translation and rotation is

x ′
i = xi + u + ux (xi − x0) + uy(yi − y0),

(5)
y′

i = yi + v + vx (xi − x0) + vy(yi − y0),

where ux, uy, vx, and vy are coefficients of the shape function.
To determine the eight unknowns (u, v, ux, uy, vx, vy, a, b), the
Newton–Raphson algorithm is employed to minimize C in
Eq. (4). With the detected (u, v), the location of each control
point in the frontal image can be directly determined. Then,
these points in the frontal image are reversely projected back
to the image plane to achieve hyperaccurate localization of
the control points.

The rationale of the proposed method is that although
the imprecise control points detected in the raw images lead
to inaccurate camera calibration parameters, they offer good
initial information about the relation between the camera and
each scene which can be further processed to achieve very
accurate localization of the control points. This information
helps detect the camera intrinsic and extrinsic parameters
as well as the world coordinates of the control points with
high accuracies. The procedure of the proposed technique is
summarized as follows:

1. Detect the control points in the raw images using the
edge detection and ellipse fitting method.

2. Optimize the camera parameters and world coordi-
nates of the control points using the LM algorithm.
This involves a similar procedure as the conventional
technique using Eqs. (1)–(3).

3. Obtain the frontal images, and use the calculated po-
sitions of the control points in the frontal images as
initial guess to refine the positions using the DIC
method.

4. Reversely project the detected control points in the
frontal images back to the raw images.

5. Re-optimize the camera parameters together with the
world coordinates of the control points.

To demonstrate the validity of the proposed technique,
computer simulation along with real experiment have been
conducted. The results suggest that no less than 40 control
points and 15 positions are required to ensure a reliable cali-
bration. Both simulation and experiment presented below use
a flat panel with 10 × 7 ring patterns whose grid distance is
25.4 mm (as illustrated in Fig. 1), and 20 images at different
positions are used in the calibration.

In the simulation, the images are synthesized with camera
parameters obtained from a real calibration where the radial,
tangential, and prism lens distortion are considered. In addi-
tion, Gaussian noise with a standard deviation of 0.2% of the
25.4 mm distance is added to the position of each ring pattern
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Fig. 2 Localization errors of the control points obtained by Heikkila’s
method and the proposed method.

in the x and y directions, and the images are also blurred and
Gaussian noise with σ = 2.0 is added. Figure 2 shows the
errors in locating the positions of the control points against
their true values. Using Heikkila’s technique7 to detect the
control points directly in the raw images, the effect of per-
spective distortion where the ellipse center is not the actual
circle center is obvious. In contrast, with the frontal image
and DIC concepts, the distortion effect is removed, and over
20 times localization improvement in terms of the root-mean-
square error (RMSE) in both x and y directions is achieved.
The residual of the calibration, named reprojection error and
defined as the RMSE between the projection of the control
points to the image planes and their measured locations, is
0.00086 pixels. Table 1 shows the results of the intrinsic pa-
rameters. It can be seen that the camera parameters can be

Table 1 Intrinsic calibration parameters.

True Retrieved Error

α 5776a 5775.9906a 0.00016%

β 5776a 5775.9910a 0.00015%

γ 0.2767a 0.2772a − 0.18%

u0 1067a 1067.0262a 0.0025%

v0 751a 750.9649a 0.0047%

a0 0.179 0.1789 0.012%

a1 − 0.334 − 0.3339 0.33%

a2 28.110 28.0892 0.074%

p0 − 0.00371 − 0.0037067 0.19%

p1 − 0.00229 − 0.0022943 − 0.14%

s0 0.00631 0.0063065 0.16%

s1 0.00627 0.0063018 − 0.36%

aUnit: pixel.
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Fig. 3 Reprojection errors at the control points obtained by the con-
ventional method and the proposed method. The vector scales are
different in the figures for clear illustration.

accurately retrived once the control points are detected with
high precision.

For the real experiment, Fig. 3 shows the displacement
error vectors between the detected and projected positions at
each control point of the calibration target. With the conven-
tional method and the proposed one, the reprojection errors
are 0.3848 and 0.0098 pixels, respectively. Because of the in-
sufficiency of the lens distortion model and the imperfection
of the calibration target, the reprojection error is noticeably
polarized with the conventional method in spite of its con-
trol refinement. With the proposed method, the error behaves
more isotropic, indicating that the lens distortion and the
imprecision of the calibration target have been successfully
compensated.
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