You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
1 November 2011Analysis of spectral broadening of incoherent light in optical fibers with nonzero dispersion
Fiber dispersion plays a significant role in spectral broadening of incoherent continuous-wave light. We develop a self-consistent stochastic model for spectral broadening of incoherent continuous-wave light through nonlinear wave mixing and apply this model to numerical simulations of spectral broadening in a continuous-wave fiber Raman laser. The results of these numerical simulations agree very well with carefully conducted laboratory measurements. Under a wide range of operating conditions, these numerical simulations also exhibit striking features, such as damped oscillatory spectral broadening (during the initial stages of propagation) and eventual convergence to a stationary, steady-state spectral distribution at sufficiently long propagation distances. We analyze the important role of fiber dispersion in such phenomena. We also derive an analytical rate equation expression for spectral broadening, whose numerical evaluation is far less computationally intensive than the fully stochastic simulation, and a mathematical criterion for the applicability of this analytical expression.
The alert did not successfully save. Please try again later.
Daniel B. Soh, Jeffrey P. Koplow, "Analysis of spectral broadening of incoherent light in optical fibers with nonzero dispersion," Opt. Eng. 50(11) 111602 (1 November 2011) https://doi.org/10.1117/1.3609811