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1 Introduction
This paper presents a tutorial on the performance metrics,
status, and prognosis of aided/automatic target recognition
(Ai/ATR) for those whom are not close to the military appli-
cation of the technology, but who may be able to contribute
to its ultimate successful development. Ai/ATR is a generic
term to describe automated processing functions carried out
on imaging sensor data in order to perform operations rang-
ing from simple cuing of a human observer to complex,
fully autonomous object acquisition and identification. ATR
is fully autonomous, such as, for example, the terminal ac-
quisition phase of a missile seeker. However, aided target
recognition (AiTR) processing presents image annotations
to the human observer to make the final decision as to the
importance and veracity of the information generated and the
action to be taken. In this paper, the imaging sensors that gen-
erate the data for the Ai/ATR processor are platform centric,
including visible and electro-optics–infrared (EO/IR), 3-D
LADAR, and imaging radar [e.g., synthetic aperture radar
(SAR)]. EO/IR includes multi- and hyperspectral imaging.
Signal processing of data from nonimaging sensors, such as
acoustic, seismic, and magnetic sensors, is not considered;
although these sensor outputs can be used as cues in a mul-
tisensor configuration for Ai/ATR.

2 Military Importance
Ai/ATR is an extremely important technology for military
operations that has not yet realized its full tactical promise.
A fully reliable Ai/ATR can enhance lethality and surviv-
ability of the war fighter and platform. An Ai/ATR operates
on sensor data in order to process information for decision
making. The primary value added to a weapons system of an
Ai/ATR is engagement timeline reduction for target(s) acqui-
sition. The rapid acquisition and servicing of targets increase
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lethality and survivability of the weapons platform/soldier.
Whether the tactical scenario is the onslaught of an array of
combat vehicles coming through the Fulda Gap, which was
feared during the Cold War, or the identification of humans
with intent to kill in an urban scene, the identification of the
threat for avoidance or engagement is paramount to survival
and threat neutralization.

There are many military scenarios where a reliable
Ai/ATR capability would provide an enormous capability
to the soldier. A rapid wide-area search to provide alerts in
larger fields of regard is the classical example that has al-
ways been envisioned. Ai/ATR can also enable the overcom-
ing of unmanned air-/ground-vehicle bandwidth limitations
by selection for transmission of only target information to
a weapons platform. A reliable onboard Ai/ATR would se-
lect and send only target information back to the unmanned
air vehicle (UAV) operator without the enormous data band-
width for transmission of the complete scene over the flight
path from which the operator must extract the target. Muni-
tions precision targeting and lock-on-after-launch seekers are
other examples of fully autonomous ATR. Persistent surveil-
lance (PS) presents a first military application opportunity
for lower technically sophisticated Ai/ATR in that change
and anomaly detection are of primary significance. Things
that change in a scene, or are different, are of primary impor-
tance in PS. Temporal techniques, such as change-detection
algorithms and moving-target indication (MTI) become first-
step candidate approaches. Change detection can be a major
tool in improvised explosive detection (IED) detection. Dis-
turbed earth, where a device has been buried, presents a
significantly different signature than undisturbed earth. The
disturbed earth presents a much more uniform, blackbody-
like, spectral signature compared to the much more structured
signature of undisturbed soil.1, 2

Extremely large coverage areas, such as that required in
PS or for airborne detection of IEDs along a roadway, with
sufficient resolution and update rate become driving sensor
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Fig. 1 Generic Ai/ATR algorithm showing discrimination functions processed on image.

parameters. The need for ground-to-ground Ai/ATR in urban
environments is amplified due to the huge fields of regard
(∼2π steradians), the shortness of timelines, and the need
to discriminate combatant from noncombatant. The Ai/ATR
task difficulty is extremely task dependent, and a canonical
data set is always a concern for training and evaluation in a
military scenario.

All three services are engaged in research and develop-
ment for reliable Ai/ATR capabilities for myriad combat
missions. Army, Navy, and Air Force are pursuing Ai/ATR
with sensor packages for their respective platforms to do the
following: reconnaissance, intelligence, surveillance, target
acquisition, fire control, wide-area search and track, coun-
termine, and sensor fusion. Change detection and MTI that
relates to target disposition are also of interest. Army sen-
sor assets typically emphasize EO/IR because of sensor size,
weight, and power constraints on the platform, whereas Navy
and Air Force tend to emphasize high range resolution and
SAR radars due to the long stand-off ranges associated with
ship and aircraft engagement ranges. This paper focuses on
the extremely difficult ground-to-ground missions associated
with Army or Marine combat. More extensive discussion of
sea and air Ai/ATR missions can be found in the unclassified
open literature at the Defense Technical Information Center
(DTIC).3–8

There is a whole hierarchy of possible tasks that can be
of interest for an Ai/ATR algorithm. The level of discrimina-
tion can cover a whole gamut, from detection to classification
to recognition to identification. Definitions of these military
tasks for EO/IR and rf/SAR can be found in the literature.9–13

There can be other tactical tasks that do not fall neatly into this
hierarchy. For example, target tracking, aim point selection,
and target prioritization are target-engagement relevant tasks
that can be candidates for automation in the target-acquisition
and fire-control processes. When the Soviet Union was the
premier potential adversary for the United States and nuclear
war was not considered as an option, the most important land
warfare conflict envisioned was tank-on-tank battles. In this
scenario, the classic ATR task was detection and recognition
with sufficient detail to engage the target with a weapon. To-
day, one of the most difficult tasks of interest is identification
of intent. Whereas, in the past, detection of a human may
have been sufficient, today the soldier must also determine
the intent of the human detected. Is the intent of the detected

human hostile? In PS for situational awareness, changes are
the most important information in order to alert and bring
other sensor assets to bear. Have military significant assets
moved or are have new ones appeared? Although the techni-
cal sophistication of Ai/ATR has not progressed rapidly, the
sophistication of the required performance from automated
sensing has increased significantly.

A very simplified diagram of a generic Ai/ATR algorithm
is shown in Fig. 1. The image from the sensor is fed into
the front end of the processor. Preprocessing conditioning
is performed. These can be standard image-processing tech-
niques to reduce/remove noise, perform image orientation,
etc. Features are extracted so that candidate regions of in-
terest (ROIs) are segmented, anomalies identified, and de-
tections declared. Higher level features are found, for ex-
ample, by comparing segmented regions to templates or
stored models of targets. At this point, higher level dis-
criminations may be declared. As mentioned earlier, there
exists a whole hierarchy of potential target discriminations.
For ground combat, examples of these two class discrimina-
tions are as follows: classification (tracked versus wheeled),
recognition (truck versus tank), and identification (M1 tank
versus T72 tank). Similar discriminations exist for air and
naval warfare. In recent years, higher level discrimination
may include “fingerprinting” when a specific entity identity
is required, such as “that” vehicle was the one that planted
the IED. There is an enormous array of algorithms that have
been proposed, implemented in hardware, and tested within
many Department of Defense (DOD) services and agencies.
A selection of algorithm classes are statistical, shape based
(template/model), MTI, increased dimensionality (e.g., 3-D
LADAR),14–16 hyper-/multispectral (MS/HS),17–19 and neu-
ral nets. Multisensor phenomenologies have been tried, in-
cluding multisensor, where more than one sensor is looking
at the same target; multilook, where one sensor gets several
looks at the target from different aspects; and multimode fu-
sion, where sensors of different modalities sense the target
(e.g., acoustic and EO signals are fused). Many variations of
algorithms have been proposed and attempted in hardware
and software, and a survey list of algorithms can be found in
the literature.20

In order to illustrate the ground-to-ground Ai/ATR dif-
ficulty, Fig. 2 shows a representative set of IR sensor
scenes for the same targets in each scene in a variety of
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Fig. 2 Typical IR scenes with targets unannotated.

backgrounds. The targets are a sedan, a pickup truck, van,
and SUVs. In order to give the reader a realistic feel for the
task difficulty, no annotations are given to show the targets
in the scenes. The same scenes, with the targets indicated
by a box superimposed on the scene that display the ATR
annotations for the imagery, will be shown later in Fig. 6.
These figures are also shown in order to demonstrate the
difficulty of the Ai/ATR task with midwave IR thermal im-
agers. The most prolific battlefield sensors in the U.S. Army
after the human eyeball and night-vision goggles are thermal
imagers.

3 Figures of Merit

3.1 Three Bottom-Line Figures of Merit
The three bottom-line figures of merit for Ai/ATR are re-
ceiver operator characteristics (ROC) curves, confusion ma-
trices, and time. The ROC curves show the relationship of
the algorithm-detection probability to the false alarms. They
show how well the ATR discriminates real targets of interest
from noise sources or background clutter objects. Figure 321

shows a typical ROC curve for a developmental Army ATR.
The different curves correspond to using different numbers
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Fig. 3 Receiver operator characteristic (ROC) curve.

Fig. 4 Confusion matrix for target identification.

of spectral bands in the midwave IR (MWIR) and long-wave
IR spectral regions using a constant false alarm (CFAR) de-
cision algorithm. The movement of the family of curves to
the left and higher indicates higher performance.

Confusion matrices show the relationship between the
real target identity to what the ATR called it. Higher level
discrimination performance, such as recognition or identifi-
cation, is displayed in the confusion matrices. Figure 4 shows
a stylized confusion matrix for algorithm identification per-
formance against ground combat vehicles. A detailed discus-
sion of the considerations for the measurement of confusion
matrices is given in Ref. 22.

Time to acquire the targets within the sensor field of view
and field of regard is the real benefit for use of Ai/ATR.
Measured AiTR timeline performance when compared to
human-alone performance has been shown to realize an order
of magnitude reduction (see Ref. 23).

3.2 Imagery Data Set
In order to carry out a performance evaluation of an ATR
algorithm for imaging sensors in terms of ROC curves and
confusion matrices, it is necessary to have a relevant im-
agery data set. For example, if the desired ATR algorithm
is for a tank fire control mission and the main sensor is the
IR gunner’s primary sight, then, IR imagery of a scene with
threat targets, for all variants and at all poses and orienta-
tions, is required in all relevant backgrounds. For air-to-air
combat and surface naval warfare, a similar set of the rele-
vant targets is required. Another scenario of close air support
requires a similar set of ground targets, but with another set
of variables for target reticulation (i.e., which direction the
gun is pointing). The issue of the target signature set has
been well documented.24 These requirements then imply the
generation of a library of IR imagery, which is, typically,
classified. Not only is the imagery classified, but the sensor
parameters for the gathering device are classified. This has
been a significant issue for military Ai/ATR development.
The necessary classified imagery is easy enough to obtain
and the service laboratories do this extensively. However,
the imagery set can be quite extensive and cannot be re-
leased to noncleared organizations. For example, university
researchers with noncitizen students cannot get the neces-
sary imagery to design the algorithm and test it. Instead, we
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have had to live with algorithms developed against civilian
vehicles on U.S. highways. Extrapolation to realistic military
scenarios is extremely difficult, if not impossible, and there
can be no free back-and-forth interaction for the development
of Ai/ATR among the government labs, defense industry, and
academia.

The issue of the canonical imagery data set for perfor-
mance quantification is so severe that a special DoD com-
mittee has been chartered to define problem sets. This is the
ATR Working Group.25 Sanctioned problem sets permit the
establishment of universal metrics to assess algorithm per-
formance collectively and scientifically. The same problem
set can be used to test any number of candidate algorithms
and permits quantifiable difference measurements across all
candidates.

The problem of an unclassified, canonical stimulus set
of imagery has been somewhat addressed in the last several
years with the release of a specially gathered, unclassified IR
imagery set for AI/ATR algorithm development. Unclassi-
fied sensors were used to obtain MWIR and visible imagery
of tactical vehicles, civilian vehicles, and people in realistic
tactical scenes with corresponding ground-truth and meteo-
rological data. This >300-GB imagery data set is available
by contacting SENSIAC26 at a cost of several hundred dol-
lars. Although this is only one data set for one scenario, it
is a significant step toward enabling the injection of a wider
academic community into the research on Ai/ATR.

Once stimulus data have been obtained, the data must be
separated into a training set and a test set. The algorithm
must be trained on a relevant set of imagery that relates to
the mission scenario and will expose the algorithm to all the
variables that it will be expected to handle. This means the
target set must be appropriate, including not only the target
set, but also the variants of the members of the set to envi-
ronments, operational conditions, and backgrounds. Various
environments are needed because the same vehicle can ap-
pear differently from day to night, season, and even time of
day. Think of especially diurnal and seasonal variations in the
infrared spectral regions. A set of relevant operational condi-
tions is needed because the target signature will vary whether
it is stationary, moving, firing, if it has been rained on, cam-
ouflage, etc. Different backgrounds present a variety of con-
fusers and competitive false targets. Because it is impossible
to sample all the infinitely large sample sets of conditions,
a judicious set of samples must be chosen that represents a
sufficient expanse of the complete target/background set and
that gives some confidence that the entire space has been
faithfully represented. Agreement on this point is usually a
major bone of contention between a government evaluator
and an industrial developer.

In order to use the chosen data set of stimuli for Ai/ATR
testing, the data set must include ground-truth data. That is,
the location of legitimate targets in the scene must be deter-
mined digitally in order to score the ATR annotations. Usu-
ally, an error box is associated around the true target, where
an ATR annotation is accepted as a true detection. This can
be a tedious process, even with modern computer software.
There are only a few laboratories in the Defense Department
that routinely carry out these ground-truth and score Ai/ATR
algorithms for the community, source selections, and mis-
sion accomplishment. Two of these are the Army’s Night
Vision & Electronics Sensors Directorate (NVESD) and the
Air Force’s Wright Patterson Research Laboratories.

3.3 Simulated Imagery
One might consider the utility of generating simulated im-
agery of tactical scenes as a surrogate for realistic test im-
agery that could negate testing against all the possible real-
world scenes. This concept has been investigated and shown
to be problematic.27 Testing with simulated imagery has
shown that, although the detection probabilities are quite
comparable between synthetic and realistic imagery, the false
alarm rate (FAR) was much different with simulated im-
agery compared to the realistic image inputs. The hypothesis
suggested for this difference is the differences in real and
simulated backgrounds, where false alarms are generated.
The synthetic image generators evidently produce different
target confusing regions in the background from real back-
grounds. Additionally, the synthetic noise generation can be
significantly different from true sensor noise characteristics.
It is important to characterize the sensor noise characteristics
extremely well to simulate sensor realistic noise.

3.4 Receiver Operator Characteristics Curve
Determination

In order to test an Ai/ATR algorithm for its detection perfor-
mance, as determined by its ROC curve, the requisite data
set from a relevant imager viewing a relevant operational
scene needs to be digitized and fed into the algorithm un-
der test. The single-frame processors process the imagery,
frame by frame, and nominate image sections as targets.
Usually, a recognition decision is also reported. The anno-
tations are scored by comparison to the ground truth and an
ROC curve generated for that data set (Fig. 5). Slightly dif-
ferent approaches to scoring and evaluation are required for
multiframe processors and those designed to look for moving
targets.

This Fig. 5 curve is generated by feeding the digitized
image frames into the computer that is hosting the ATR al-
gorithm. As each detection decision is made, its location is
matched to the ground-truth data file for the real targets. If
the ATR algorithm declaration is within an established error
region of the real target, then it is recorded as a true detec-
tion. If the declaration is not in a real target region, then it
is recorded as a false alarm. The higher the curve is and the
more to the left, the better the performance is. See Fig. 3 for
a set of curves showing performance improvements as the
curves move higher to the left. The generated curve is unique
for the processor, scene, training set, and test set. Here lies the
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Fig. 5 Generation of a ROC curve.
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Fig. 6 Annotated images from Fig. 4. Top two images have a sedan
and pickup truck, on left and right, respectively. Bottom two images
(from left to right) show an SUV, pickup truck, van, and SUV.

bane of the ATR technology. Any change in target condition,
location, signature, background, processor/algorithm charac-
teristics, etc., can cause a different call for the annotation. The
hope of the technology is that sufficiently robust algorithms
can still correctly acquire the targets in backgrounds to give
the operator enough confidence to use it with the commen-
surate improvement in combat effectiveness. The reliability
with which ATR can do this in military applications is gener-
ally not acceptable for all but a few situations. The veracity
of this statement is difficult to substantiate without reference
to classified literature.

The method of measurement of how an ATR algorithm
performs (i.e., the determination of the ROC curve) is crucial
to understanding what we expect an ATR to do and estab-
lishes the database characteristics to evaluate it. The method
described here is the method developed at the U.S. Army’s
CERDEC NVESD by a team led by Carl Hoover and Clare
Walters.28, 29 Other evaluations of ATR ROC curves are sim-
ilar. The first thing to recognize is that most ATR algorithms
today, and that have been tested in the laboratory, are based
on a CFAR parameter. That is, the determination of the tar-
get rests on the setting of a threshold for the number of false
alarms will be tolerated. Whatever the algorithm parameters
that are calculated from the processing of the digital image,
a confidence is established as a function of that set of pa-
rameters based on training against a relevant image set. The
threshold parameter can then be chosen based on the FAR
and detection probability (Pd) that are desired. Pd and FAR
are set based on the operational requirements.

Once the threshold CFAR is chosen, the ATR algorithm
can be tested against a test/evaluation set of imagery that
is different from the training set. The representation of the
training data set to the test/operational set is always a mat-
ter of intense discussion between algorithm developer and
service evaluator.

The CFAR being selected, the algorithm can be run against
the test imagery set. All annotations of the algorithm, real tar-
get or false alarm, can then be ordered against a confidence.
Critical to this process is the relating of the algorithm’s anno-

tations to real targets based on the image ground truth. This
is another critical component of the evaluation process. How
to establish/score an annotation as a true target hit or a false
alarm is critical. However, software has been developed to
do this.

The ROC curve shown in Fig. 5 can be now generated.
Starting with the highest confidence value, a point is estab-
lished on the Pd versus FAR axis. As the computer runs down
the threshold confidence values, from highest to lowest, true
target detections and false alarms are plotted. As the number
of annotations is increased, a smooth curve similar to Fig. 3
is generated.

The importance of a set of training imagery as repre-
sentative of the operational situation is another crucial con-
sideration. Careful, judicious choices must be made by the
evaluator to ensure all real targets are deployed in tactically
relevant scenes. The algorithm must be stressed such that
the war fighter has confidence in its use. Conversely, the
algorithm developer must understand the scenario in order
to design the algorithm to go after the tactically significant
artifacts in the scene.

It is obvious that range to the target can be very important
information for the processor to help size the window of in-
vestigation. Estimations on range to points in the image must
be made. If the weapon system has an integral rangefinder,
then range is given to the algorithm under test. If not, then
the algorithm usually uses some technique programed, such
as a flat-earth technique, to estimate range which can intro-
duce significant errors into the range value and, consequently,
the target size. Knowledge of range in the scene can enable
a great enhancement to algorithm performance. Other ap-
proaches, such as rescaling selected regions in the image to
a fixed range, have also been used.

The ROC curve is generated as the probability of detection
on the vertical axis and false alarms on the horizontal axis.
Usually, FAR is in units of false alarms per square degree
for ground combat and false alarms per square kilometer for
airborne sensors. This is because on the ground, the ground
covered by the sensor field of view goes from very close
to the horizon. Typically, this experimental ROC curve is
compared to a specification ROC curve based on a weapon
system requirement to determine if the algorithm meets the
performance requirement.

4 What’s the Problem?
The extreme difficulty of the military target acquisition
task has thwarted progress in the development of image-
processing techniques that enable an acceptable level of per-
formance for the war fighter in harm’s way. Aided target
recognition in relatively benign environments, such as low
clutter, has been shown to perform at a useful level. However,
medium to highly cluttered backgrounds introduce an unac-
ceptable amount of false alarms, whereas target variability
and operational environmental conditions also have a sig-
nificant degrading effect. Higher level discriminations, such
as target recognition and identification, fall off significantly
compared to detection. Previous technical articles on the per-
formance of military Ai/ATR technology can be found in the
literature.30–33 An excellent synopsis of types of algorithms
is given by Bhanu.34
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4.1 False Alarms
A primary operational limitation for ATR is the false alarm
problem driven by objects in the scene that can be confused
with targets (confusers) and background clutter that causes
the operator to spend excessive time interrogating them. This
problem is exacerbated by sensors that are not visible imagers
and do not have the resolution of visible imagers and are not
familiar to normal human vision, such as thermal imaging.
Additionally, in tactical situations the threat can introduce
countermeasures such as camouflage and defilade. The abil-
ity of humans to discern targets is still significantly greater
than that of electronic processing algorithms.35 However,
humans cannot process the available information and make
decisions at a fast enough rate to engage targets effectively.
The electronics can process the information at a much faster
rate, and that is why the military continues to pursue an effec-
tive Ai/ATR technology for military combat requirements. It
has been shown that timelines for target acquisition can be
reduced on the order of a magnitude using Ai/ATR with a
human over human only.35

Although there have been some successes in military
Ai/ATR in the services, there have been some significant lim-
itations to the desired performance. The main challenge that
has been identified for military Ai/ATR is the level of false
alarms for detection encountered in real environments. The
level of false alarms in a tactical ground-to-ground scenario
can be sufficient that the operator will turn off the AiTR/ATR.
Besides increasing the time to acquire the real target and the
frustration, false alarms can be dangerous. Firing at a false
target will give the position of the firing platform away and
make it a target of counterfire.

4.2 Clutter
A primary limitation of ATR technology is lack of an un-
derstanding of clutter and a reliable clutter model that can
quantify the scene difficulty. This difficulty is compounded
by the obvious dependence of scene difficulty on the target
of interest. Clutter that confuses detection of a vehicle is
different when attempting to detect personnel. Clutter mod-
els that are more sophisticated than simple signal-to-clutter
models representative of human performance models are re-
quired. Examples of approaches to quantifying clutter, such
as Lanterman et al.,36 appear in the literature, and there are
information theoretic approaches.37, 38 The ultimate clutter
metric must surely contain some target conspicuity factor. A
clutter metric that is primarily a function of signal-to-noise
ratio or signal to clutter will not show the true dependency
of performance on real-world clutter. Further discussion of
clutter modeling39 can be found from research funded by
the Army at the Center for Image Sciences.40 Besides clut-
ter, camouflage and signature disrupters can also degrade
Ai/ATR performance, which is another major reason Ai/ATR
has been very difficult for military applications.

4.3 Target Variability
Another performance limiter to aided target acquisition is tar-
get variability under operational conditions. The target can
present all aspects and can have different signatures under
different environmental, operational, and background con-
ditions. Camouflage, concealment, and deception (decoys)
increase the target dimensional space significantly.

These variables plague Ai/ATR’s in all the services and
set the most severe limitations of performance today for this
technology. Probabilities of higher order than detection per-
formance degrade as the sophistication increases. The limi-
tations imposed by false alarms and variable environmental
conditions might imply that the best we can hope for is aided
target recognition. Full automatic target recognition may be
unattainable, or at best, take a long time to mature.

5 What Works?
Years of research and development coupled with constant
test-fix-test cycles for specific ad hoc mission targeting ap-
plications have resulted in the level of maturity for Ai/ATR
that we have today. It is impossible to give precise data rep-
resentative of the state-of-the-art performance today in an
unclassified forum. Shape-based approaches to ground-to-
ground stationary target indication have shown to give useful
performance in low to medium clutter. The clutter level is
subjective because there has been no clutter metric to accu-
rately determine task difficulty. One of the greatest unmet
challenges of this technology is a reliable clutter metric.
Shape-based algorithm suites are typically template match-
ing schemes or comparison of target images to stored target
models.

Ai/ATR from airborne sensor platforms has been shown
to be somewhat better performing compared to ground to
ground. This is because the clutter from the air is not as
competitive as opposed to the ground scenario. There is also
an advantage of recognizing an overhead aspect, which is
not as complex compared to ground to ground, and is not
as easily confused with overhead views of ground clutter. In
addition, typically, aircraft altitude is known, which makes
range estimation easier and the sensor field of view does
not extend to infinity as it does on the ground. Atmospheric
attenuation from the air tends to be much less that for ground-
to-ground lines of sight.

The current conflicts in southwest Asia have refocused the
important application of Ai/ATR from fire control to persis-
tent surveillance missions. Previously, the focus of the tech-
nology was on the acquisition of targets for the Comanche
helicopter fire control. The paramount application today of
persistent surveillance to detect hostile activity is potentially
a somewhat easier task. The approaches developed for PS that
have had some success are change detection and MTI. Detec-
tion of new targets and missing targets in images compared
to previous images of the same location has had some suc-
cess. MTI from the air and from stationary ground platforms
also has been shown. However, MTI from moving ground
platforms has problems with optical flow and confusion of
whether the motion is target or platform induced.

Two more sophisticated sensor approaches that offer more
image features on which a decision can be based are MS/HSI
and 3-D LADAR. However, these system concepts require
increased system complexity and cost. Both add another or-
thogonal dimension to the decision space. MS/HSI uses the
unique spectral content of objects as the discrimination met-
ric between backgrounds and targets. MS/HSI sensors can be
used in a search mode for target detection, however, presently
they are day-only operation and are large expensive sys-
tems. 3-D LADAR–based imagers add the depth dimension
to the image as another target discriminator. The system im-
plications downside of 3-D LADARs is that they have high
power requirements, are not useful for searching, and laser
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power requirements constrain the practical range that can be
realized.

6 Opportunities for Advances in Aided and
Automatic Target Recognition Performance

There are many potential applications throughout the ser-
vices for reliable Ai/ATRs. However, except for some small
number of applications, the attainable level of performance
must be significantly improved to handle all the false alarms
and environmental variables that are encountered in military
scenarios. We cannot look to improvements in the imaging
sensors being used as the front ends for Ai/ATR’s. They are
already pushing the limits of physics. Performance improve-
ments must be in the ATR algorithm concepts or in the way
AiTR annotations are presented to the observer in order to
engage more of the observer’s intellectual image process-
ing. New techniques for extracting objects from complex
backgrounds are needed. These new techniques would be
expected to originate in academia and could form the basis
for a new springboard for image science in the pursuit of
useful military Ai/ATR capability.

Candidate starting points for military relevant image sci-
ence approaches to Ai/ATR are pattern theoretic approaches
to understanding complex scenes41 or a recognition-by-
parts42–44 approach. The recognition of a tactical, canoni-
cal geon in an image that is partially obscured could im-
ply the presence of a target of interest. Eye-brain research
could lead to more understanding of what needs to be ex-
tracted from a tactical image and presented to the opera-
tor for enhanced recognition ability. Other nonimage-based
techniques, such as category theory,45 hierarchical systems,46

and gradient index flow,47 are possible formalisms that might
be applied to help the Ai/ATR problem. Any improvements
realized in ATR performance would be due to algorithm
improvements in software as opposed to improving sensor
hardware.

A system-level approach to increasing Ai/ATR perfor-
mance is to take advantage of tactical networks on the battle-
field. There is a plethora of imaging and nonimaging sensors
on the battlefield that are being networked together for trans-
mission of information, such as targets, across platforms.
At each platform, the ATR could take the off-board data
and build a case for each, indicated onboard detection as to
target or false alarm. For example, an unattended acoustic
sensor could supply information to a tank computer that an
image annotation was, in fact, another tank. An example of
an existing Army platform that is designed for this kind of
decision making is distributed common ground station. This
approach to low false alarm Ai/ATR would be limited by the
bandwidth limitations of the tactical network. This kind of
approach stresses the tactical network capabilities with some
sophistication improvement in the algorithm software and no
impact on the sensor.

7 Summary and Conclusions
Ai/ATR can provide significant enhancement to military
weapons platforms over human-only performance. AiTR can
provide enhancements to the weapons operator or intelli-
gence analyst for fire control, surveillance, reconnaissance,
intelligence, persistent surveillance, and situational aware-
ness. ATR can provide fully autonomous target engagements,
such as for missile seekers. Present use of Ai/ATR by the
military has been limited due to the level of difficulty of the

automated task. However, the technology is being pursued in
academia, industry, and government laboratories.

Most prevalent state-of-the-art Ai/ATR algorithms today
are shape based, in which performance degrades significantly
under realistic operational conditions, such as clutter, vari-
able target set, and variability. Ground-to-ground degrada-
tions have been shown to be more severe than airborne tar-
get acquisition. Enhancements to shape-based approaches
potentially can provide a more robust capability. Temporal
techniques, such as change detection and MTI are examples.
Sensor-level improvements are MS/HSI in wide-area search-
and camouflage-detection and 3-D LADAR for higher level
recognition and identification.

Aided target recognition will mature more rapidly than
ATR. By off-loading the higher level decisions to the human,
the value of the AiTR will be to potentially provide an order
of magnitude improvement in target acquisition times. This is
significant in war fighting with increasingly more importance
in urban warfare.
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