You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
1 November 2012Enhancement of absorption in thin-film amorphous silicon solar cell with guided mode resonance
The enhancement of absorption in a thin-film amorphous silicon solar cell based on guided mode resonance is theoretically investigated. This is achieved by patterning a single- or double-groove grating with a waveguide layer as the absorbing layer. The optimized grating parameters are obtained by use of rigorous coupled-wave analysis and the simulated annealing algorithm. The averaged integrated absorptions are weakly dependent on the angle of incidence in both grating structures. It is shown the optimized solar cell with double-groove grating has better optical performance than single-groove grating structures. The qualitative understanding of enhanced absorption based on guided-mode resonance and double-groove grating structure is presented. An antireflective grating structure is proposed and discussed for reducing reflection and enhancing absorption. The solar cell with antireflective grating has much better performance than those without an antireflective grating. The designed solar cells have high integrated absorption and are weakly dependent on the incident angle, which should be highly interesting for practical application.