31 July 2014 Asymmetric transmission of linearly polarized light through dynamic chiral metamaterials in a frequency regime of gigahertz–terahertz
Author Affiliations +
Optical Engineering, 53(7), 075109 (2014). doi:10.1117/1.OE.53.7.075109
In a lossy media, anisotropic chiral metamaterial (MTM) structures with normal incidence asymmetric transmission of linearly polarized electromagnetic (EM) waves are investigated and analyzed in both microwave and terahertz frequency regimes. The proposed lossy structures are used to perform dynamic polarization rotation and consist of square-shaped resonators with gaps on both sides of dielectric substrates with a certain degree of rotation. Asymmetric transmission of a linearly polarized EM wave through the chiral MTMs is realized by experimental and numerical studies. The dynamic structures are adjustable via various parameters to be tuned for any desired frequency regimes. From the obtained results, the suggested structure can be used to design new polarization control devices for desired frequency regimes.
Ozer, Dincer, Karaaslan, and Akgol: Asymmetric transmission of linearly polarized light through dynamic chiral metamaterials in a frequency regime of gigahertz–terahertz



Approximately 40 years ago, the curiosity of a Russian scientist, Veselago, began the negative index metamaterials (MTMs) process.1 Thirty years later (around the 1990s), a British scientist, Sir John Pendry, presented a proposal which soon gained concreteness.2

MTM structures that may be produced by some artificial methods do not exist in nature. The good features of these structures are the negative index of refraction and the fact that a wave and energy in the moving axis have opposite directions. One of the most interesting features of MTMs that attracts the researchers is that these artificially manufactured structures can provide the opportunity to obtain a negative refractive index. The pioneering study in this area was theoretically proposed by Pendry.2

The presence of these materials was demonstrated and was experimentally manufactured by Shelby et al.3 Their work consists of a copper wire and a split-ring resonator system. Dielectric photonic crystals were then investigated by Ozbay et al. for the first time.4

Application of MTMs in the terahertz (THz) range has recently gained great importance. THz MTMs are the new class of artificial composite materials under development that work in the THz frequency regime. Generally, the THz frequency range used in the research of materials is defined in the frequency spectrum from 0.1 to 10 THz.

MTMs are a promising new concept to be used in the design and development of many new technological areas such as electronics, microwave, optical circuits, antenna miniaturization, antenna design, and so on. Working in the THz frequency range leads us to develop useful devices to be used in security screening, medical imaging, wireless communication systems, nondestructive evaluation, and development of the applications of chemical identification.

Chirality is a very important concept of MTMs for which a negative refractive index can be obtained around the resonance point through both the right- and left-hand circularly polarized waves for different transmission values.12

In this study, we theoretically and experimentally examined and analyzed the asymmetric transmission phenomenon for linearly polarized electromagnetic (EM) waves in both microwave and THz frequency regimes. The asymmetric characteristics of the chiral MTMs are investigated and evaluated in detail. The proposed dynamic structures that provide asymmetric transmission can easily be scaled down for any desired frequency range in order to fit any desired application.


Theoretical Analysis

Chirality, one of the most interesting features that MTMs have, can be used to easily obtain a negative refractive index for various transmission values around any desired resonance point compared to other procedures for both right and left circularly polarized waves. Asymmetric transmission properties allow a certain difference between the polarization states when a wave is applied to opposite sides. In this study, for theoretical analysis, an incoming plane wave propagating in the (+z) direction with a time dependence eiwt of is considered1213.14.15.16


where the angular frequency is ω, the wave vector is k, and complex amplitudes Ex are and Ey. To understand the polarization conversion, a transmission (T) matrix expression for a given electric field can be applied as follows:



This medium is assumed to be a dielectric medium that is symmetrically embedded (e.g., vacuum). The T-matrix relates the complex amplitudes of the incident field to that of the transmitted field


The f and lin indices refer to the propagation in the forward direction and a special linear base with base vectors parallel to the coordinate axes, i.e., decomposing the field into x- and y-polarized light. Txx and Tyy are the transmitted waves in the x- and y-directions, respectively. We calculate four linear and cross-polarization transmission coefficients, Txx, Tyx, Txy, and Tyy, to obtain the transmission coefficients of circularly polarized waves, i.e., T++, T+, T+, and T. Transmission coefficients of circularly polarized waves were calculated from the linear copolarization measurements using the following equation:1213.14


This can be obtained by a change of the basis vectors from linear and circular cases, resulting in



The linearly and circularly polarized waves of the asymmetric transmission are commonly characterized by the parameter Δ. This parameter shows the difference between transmittances in the (+z) and (z) directions. The asymmetric transmission parameter Δ is defined as




for linearly and circularly polarized waves, respectively. Δlin(x)=0 for asymmetric transmission structures, whereas Δcirc(+)0 for the same structures. The reason for the mirror symmetry in the propagation direction is that MTMs always support the components of the transmission matrix Txy=Tyx.1213.14.15.16

However, some studies have shown that the mirror symmetry is getting lost in the propagation direction for hybridizing MTM structures.5,17 In addition, the reason for the chirality can be explained by the fact that MTM structures that have a polarization conversion feature that the polarization state of the wave will change when it propagates through the structure. This case is called as optical activity of chiral structures. Depending on the handedness of a material, the azimuth of the polarization plane rotates clockwise or counter-clockwise when it passes through a chiral medium. This polarization conversion feature may lead to design polarization sensitive devices in any desired frequency range.


Numerical and Experimental Setup and Design

We numerically and experimentally investigated the asymmetric transmission properties of the proposed chiral MTM structures. The designed structures have resonator-metallic parts placed on the front and the back side of the dielectric substrate in order to provide asymmetric transmission for linearly polarized EM waves in both microwave and THz frequency regions. Furthermore, the proposed structures can also provide asymmetry by changing the parameters of the structure such as the angle, gap, and width of the metallic strips.

For a microwave frequency regime, FR4 is chosen as the dielectric substrate and the metallic patterns are modeled as copper sheets with an electrical conductivity of 5.8001×107S/m and a thickness of 0.036 mm. The thickness, loss tangent, and relative permittivity of FR4 are 1.6 mm, 0.02, and 4.2, respectively. Figure 1 shows the schematic diagram of the unit cell. The unit cell dimensions of the proposed resonator are shown in Table 1.

Fig. 1

The suggested chiral metamaterial (MTM) structure.


Table 1

Unit cell dimensions of the proposed resonator (Fig. 1).

ParametersMicrowave frequency regimeTerahertz frequency regime
l140 mm900 μm
l224 mm600 μm
l320 mm500 μm
g2 mm40 μm
d1.6 mm450 μm
Angle15 deg15 deg

On the other hand, for a THz frequency regime, the proposed resonators on the top and bottom layers are separated by a Quartz (fused) dielectric substrate which is selected as the substrate with the thickness of 450 μm. The loss tangent and relative permittivity of the Quartz are 0.0004 and 3.75, respectively. The metallic structures on the top and bottom layers of the substrate are chosen as silver sheets with an electrical conductivity of 6.3×107S/m and a thickness of 0.2 μm. The reason for this is that silver is a soft, white, lustrous transition metal, and possesses extremely low resistivity. The unit cell dimensions of the proposed resonator for this frequency range are also shown in Table 1.

A commercial full wave EM solver (CST Microwave Studio, Darmstadt, Germany) based on a finite integration technique has been used for numerical studies. Unit cell and open add space boundary conditions are used in both gigahertz (GHz) and THz regions. For determining the reflection and transmission properties of the proposed structure, the numerical simulations have been implemented in both GHz and THz ranges. Transmission matrices of the proposed chiral MTMs are calculated from Eq. (8). Txx and Tyy represent copolarized transmissions, and Txy and Tyx define cross-polarized transmissions. These values are obtained by Tij=Ejout/Eiin, relating the incident (Eiin) and transmitted (Ejout) waves, for example, Txy=Eyout/Exin, where Exin is the incident x-polarized electric field and Eyout is the transmitted y-polarized electric field. The transmitted wave of the electric field can be written as Eout(r,t)=|Exout|cos(kzωt), |Eyout|cos(kzωt+ϕ) for both copolarized and cross-polarized transmissions. Transmission matrices can be found by using the following equation:1819.20


where the first symbol represents the polarization of the transmitted field and the second one indicates the incident one. A similar equation can also be used for the reflection coefficients (R++, R+, R+ and R). Afterward, the numerical simulations are analyzed to determine the reflection and transmission properties of the proposed structure in the microwave frequency regime. The experimental measurement setup consists of a vector network analyzer (VNA) and two horn antennas. First, a free space measurement without the chiral structure is carried out and this measurement is used as the calibration data for VNA. Second, the structure is then inserted into the experimental measurement setup and transmission measurements are performed. The distance between the horn antennas and chiral slab is kept sufficiently large to eliminate near field effects. The VNA measures microwaves in the range of 1 to 6 GHz. Simulation and experimental results are evaluated and compared. Obtained results show that the numerical values of the sample are in good agreement with the measured ones.


Numerical and Experimental Results

For investigating the frequency responses of the proposed chiral MTMs, a CWS structure has been designed and fabricated in the microwave frequency regime with respect to the plane waves propagating along the (+z) and (z) directions. Figures 2 (numerical and experimental results in GHz) and 3 (numerical results in THz) show the results of the four transmission matrix elements (Txx, Txy, Tyx, Tyy) of the slab for propagations in the (+z) and (z) directions, respectively. One can see from these figures that the numerical results verify the measurement results.

Fig. 2

Measured-simulated transmission spectra of the four matrix elements (Txx, Txy, Tyx, Tyy) of the slab for propagations in +z (f) and (b) directions in GHz. Inset: picture of the fabricated sample.


The resulting numerical and experimental magnitudes of Txx, Txy, Tyx, and Tyy are shown in Figs. 2 and 3, in order. The obtained results show asymmetric transmission for linear polarization in the resonance frequencies which may be acquired when the propagation direction is the same. This inequality confirms the presence of a circular dichroism T+T+.

Fig. 3

Simulated transmission spectra of T-matrix elements (Txx, Txy, Tyx and Tyy) of the slab for propagations of (+z) (forward) and (z) (backward) directions in THz.


For the microwave frequency regime, the copolarization parameter of the transmission coefficient Txx reaches its maximum value of 0.86 at the resonance frequency of f=5.99GHz. With this regard, the simulation and experimental results show that Txx and Tyy are almost equal to each other. Cross-polarization parameters of the transmissions Txy and Tyx reach a maximum value of approximately 0.38 at the resonance frequency of f=4.43GHz.

For the THz frequency regime, the copolarization parameter of transmission coefficient Txx reaches its maximum value of around 0.86 at the resonance frequency of f=0.595THz. In this regard, the simulation and experimental results show that Txx and Tyy are almost equal. In addition, cross-polarization parameters of the transmissions Txy and Tyx reach to a maximum value of approximately 0.41 at the resonance frequency of f=0.583THz.

For both linear and circular polarizations, the asymmetric transmission parameter, Δ, is calculated and normalized using theoretical analysis via Eqs. (6) and (7), as shown in Fig. 4. It can be seen that the suggested model exhibits asymmetric transmission at two different resonance frequencies, 0.583 THz and 0.587 THz, for linear polarization. No significant change is observed in (Δ0) for the circular polarization.

Fig. 4

Numerical results of asymmetric transmission, Δ parameter, for linear and circular polarizations.


For the next investigation, we numerically retrieved the circular dichroism, theta degree, and chirality values of the proposed chiral MTM with constitutive relations. First, the circular dichroism is retrieved and realized, which can be defined as the differences between RCP and LCP waves of two polarizations propagating through the medium as shown in Fig. 5. The circular dichroism is theoretically characterized by the ellipticity1819.20



Fig. 5

Simulated circular dichroism (a) and theta degree (b) of the proposed chiral MTM.


Second, optical activity is retrieved and realized which could rotate the polarization plane of a linearly polarized wave propagating through, as shown in Fig. 5. A linearly polarized plane wave will rotate when it passes through a chiral medium. This rotation is called optical activity and is characterized by the polarization azimuth rotation angle of an elliptically polarized wave. The azimuth rotation is calculated by the copolar and crosspolar transmission data1819.20


It can be seen that ellipticity reaches its maximum at the resonance frequencies of 0.583 THz and 0.587 THz, respectively. This means that a linearly polarized wave is weakly distorted and circular polarization is observed at these resonance frequencies. Maximum azimuth rotation for the proposed structure is realized at the resonance frequency of 0.583 THz. This is much larger than the one observed at the second resonance frequency of 0.587 THz.

We realized a retrieval procedure to calculate the chirality parameters of chiral MTMs by using Eq. (9). Simulated chirality values calculated from copolar and crosspolar transmission data for the proposed structure between 0.58 and 0.6 THz are shown in Fig. 6 (Refs. 1819.20).





Fig. 6

Simulated chirality values of the proposed chiral MTM.


The proposed structure does not show chiral MTM characteristics between 0.592 THz and 0.594 THz. The chirality value is extremely low and near zero, but the structure shows a very large chirality value at the resonance frequencies of 0.583 THz and 0.587 THz.

Furthermore, the effects of the changes in the dimensions of the proposed resonator on the chirality are realized and evaluated. Obtained numerical results are shown in Fig. 7. The proposed geometry consists of a square-shaped resonator with gaps in the unit cell on one side and the rotated (15 deg) version of the same geometry on the other side. We have selected this shape because it is very simple, flexible, and easy to manufacture, which will allow us to adjust the structure easily by simply tuning the geometrical dimensions in order to work in any desired frequency regime. This property provides a shiftable frequency band and large chirality. The length of the wire (l2) is increased from 595 um to 650 um and the resonator at the back is rotated from 15 deg to 30 deg for parametric examination. It can be seen from the parametric study that the suggested structure has reconfigurable chirality values. In addition, the best value for the angle of the back resonator is found to be 15 deg. Therefore, this value is used in the design for the asymmetric transmission calculations.

Fig. 7

Parametric numerical study results for the chirality parameter for different angles and l2 (Fig. 1 and Table 1) wire length values.


Moreover, up- and down-shifts in the frequency response of the chirality value can be achieved when the dimensions of the resonator vary in any desired range. This feature provides mechanical tunability and flexibility to obtain any desired optical activity. Furthermore, this design possesses a very strong and dynamic optical activity due to the features previously mentioned.

Figures 8 and 9 show the electric field and surface current distributions which verify the characteristics of the resonances of the proposed design. The electric field and surface current distributions are obtained and evaluated separately for the proposed chiral MTM at the resonance frequencies of 0.583 THz and 0.587 THz. It can be seen from the surface current distributions shown in Fig. 8 that there are parallel and antiparallel currents on the top and the bottom layers of the resonator. This means that the asymmetric resonance is directly related to the antiparallel currents excited by the magnetic dipoles and the symmetric resonance mode is realized by the parallel currents excited by the electric field (Fig. 9). Moreover, the physical mechanism of the resonance mode for 0.583 THz is different than the one for 0.587 THz.

Fig. 8

Surface current distribution of the structure at the resonance frequencies.


Fig. 9

Electric field distribution of the structure at the resonant frequencies.




In conclusion, the proposed chiral MTM consisting of a dielectric substrate and a square-shaped resonator with gaps are analyzed theoretically, experimentally, and numerically for both microwave and THz frequency regimes. In addition, obtained numerical results are confirmed with our experimental results in GHz and with the simulated results in THz with very good agreement. For designing novel devices in the THz frequency band, different frequency regimes can be studied based on the proposed GHz study.

Numerical simulations showed that it is possible to adjust the optical activity, for instance by actively controlling the angle of polarization of light via integrating semiconductor layers into the chiral MTM design. Moreover, a tunability feature of the proposed model provides an additional degree of freedom for polarization control. In other words, the tunable chiral MTM design enables applications such as antireflection coatings, new THz polarization rotators, polarization control devices, security screening, medical imaging, nondestructive evaluation and the development of chemical identification applications, etc., in the THz-wave frequency range.


This work is supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under Project No. 113E290. One of the authors M. K. also acknowledges partial support from the Turkish Academy of Sciences. Moreover, the help of Professor C. Sabah is greatly appreciated with respect to the installation of the experimental setup and authors would like to thank the editors and anonymous reviewers for their suggestions to improve the paper.


1. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10(4), 509–514 (1968).SOPUAP0038-5670 http://dx.doi.org/10.1070/PU1968v010n04ABEH003699 Google Scholar

2. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).PRLTAO0031-9007 http://dx.doi.org/10.1103/PhysRevLett.85.3966 Google Scholar

3. R. A. ShelbyD. R. SmithS. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).SCIEAS0036-8075 http://dx.doi.org/10.1126/science.1058847 Google Scholar

4. E. Ozbayet al., “Subwavelength resolution in a two-dimensional photonic crystal based superlens,” Phys. Rev. Lett. 91(20), 207401 (2003).PRLTAO0031-9007 http://dx.doi.org/10.1103/PhysRevLett.91.207401 Google Scholar

5. C. S. Limet al., “Hybrid metamaterial design and fabrication for terahertz resonance response enhancement,” Opt. Express 18(12), 12421–12429 (2010).OPEXFF1094-4087 http://dx.doi.org/10.1364/OE.18.012421 Google Scholar

6. R. Singhet al., “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80(15), 153104 (2009).PRBMDO0163-1829 http://dx.doi.org/10.1103/PhysRevB.80.153104 Google Scholar

7. H. T. Chenet al., “Manipulation of terahertz radiation using metamaterials,” Laser Photonics Rev. 5(4), 513–533 (2011).1863-8880 http://dx.doi.org/10.1002/lpor.v5.4 Google Scholar

8. Y. Yuanet al., “Dual-band planar electric metamaterial in the terahertz regime,” Opt. Express 16(13), 9746–9752 (2008).OPEXFF1094-4087 http://dx.doi.org/10.1364/OE.16.009746 Google Scholar

9. S. H. Liuet al., “Dual-band SRR metamaterial in the terahertz regime,” in IEEE Conf. Publications, Antennas Propagation and EM Theory (ISAPE), 2010 9th Int. Symposium, pp. 705–707, IEEE, Guangzhou (2010). Google Scholar

10. J. Zhouet al., “Chiral THz metamaterial with tunable optical activity,” in IEEE Conf. Publications, Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conf. (QELS), pp. 1–2, IEEE, San Jose, CA (2010). Google Scholar

11. W. WithayachumnankulD. Abbott, “Metamaterials in the Terahertz Regime,” IEEE Photonics J. 1(2), 99–118 (2009).1943-0655 http://dx.doi.org/10.1109/JPHOT.2009.2026288 Google Scholar

12. F. Dinceret al., “Asymmetric transmission of linearly polarized waves and dynamically wave rotation,” Prog. Electromagn. Res. 140(1), 227–239 (2013).PELREX1043-626X http://dx.doi.org/10.2528/PIER13050601 Google Scholar

13. C. Menzelet al., “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902–253904 (2010).PRLTAO0031-9007 http://dx.doi.org/10.1103/PhysRevLett.104.253902 Google Scholar

14. W. Guoet al., “A wideband and dual-resonant terahertz metamaterial using a modified SRR structure,” Prog. Electromagn. Res. 134(1), 289–299 (2013).PELREX1043-626X http://dx.doi.org/10.2528/PIER12102315 Google Scholar

15. J. Zhouet al., “Terahertz chiral metamaterials with giant and dynamically tunable optical activity,” Phys. Rev. B 86(3), 035448 (2012).PRBMDO0163-1829 http://dx.doi.org/10.1103/PhysRevB.86.035448 Google Scholar

16. S. Zhanget al., “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3(1), 942–947 (2012).NCAOBW2041-1723 http://dx.doi.org/10.1038/ncomms1908 Google Scholar

17. V. Fedotovet al., “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401–167404 (2006).PRLTAO0031-9007 http://dx.doi.org/10.1103/PhysRevLett.97.167401 Google Scholar

18. Z. WuB. ZhangS. Zhong, “A double-layer chiral metamaterial with negative index,” J. Electromagn. Waves Appl. 24(7), 983–992 (2010).JEWAE50920-5071 http://dx.doi.org/10.1163/156939310791285173 Google Scholar

19. R. Zhaoet al., “Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index,” Phys. Rev. B 83(3), 035105 (2011).PRBMDO0163-1829 http://dx.doi.org/10.1103/PhysRevB.83.035105 Google Scholar

20. Y. YeS. He, “90° polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett. 96(20), 203501–203503 (2010).APPLAB0003-6951 http://dx.doi.org/10.1063/1.3429683 Google Scholar


Zafer Ozer received his PhD degree from the Physics Department of the University of Cukurova, Adana, Turkey. He is now working in Mustafa Kemal University, Hatay, Turkey. His research interests are photonics, EM waves, metamaterials, and waveguides.

Furkan Dincer received the BSc and MSc degrees in electrical and electronics engineering from Sutcu Imam and Yuzuncu Yil Universities, Turkey. He is now a PhD student in Mustafa Kemal University, Hatay, Turkey. His research interests are related to functional microwave structures and metamaterials.

Muharrem Karaaslan received his PhD degree from the Physics Department of the University of Cukurova, Adana, Turkey, in 2009. He is the coauthor of about 20 scientific contributions published in journals and conference proceedings. His research interests are applications of metamaterials, analysis and synthesis of antennas, and waveguides.

Oguzhan Akgol received the BSc, MSc, and PhD degrees in electrical and electronics engineering from Inonu University, Turkey; Polytechnic University, Brooklyn, NY, USA; and University of Illinois at Chicago, (UIC), Chicago, IL, USA, respectively. He is now working in Mustafa Kemal University, Hatay, Turkey. His research interests are EM scattering, antennas, and DNG materials.

© The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
Zafer Ozer, Furkan Dincer, Muharrem Karaaslan, Oguzhan Akgol, "Asymmetric transmission of linearly polarized light through dynamic chiral metamaterials in a frequency regime of gigahertz–terahertz," Optical Engineering 53(7), 075109 (31 July 2014). https://doi.org/10.1117/1.OE.53.7.075109

Terahertz radiation

Chiral metamaterials

Microwave radiation



Dielectric polarization


Back to Top