You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
23 December 2014Thermal imager fixed pattern noise prediction using a characterization of the infrared detector
Cooled infrared detectors are typically characterized by well-known electro-optical parameters: responsivity, noise equivalent temperature difference, shot noise, 1/f noise, and so on. Particularly important for staring arrays is also the residual fixed pattern noise (FPN) that can be obtained after the application of the nonuniformity correction (NUC) algorithm. A direct measure of this parameter is usually hard to define because the residual FPN strongly depends, other than on the detector, on the choice of the NUC algorithm and the operative scenario. We introduce three measurable parameters: instability, nonlinearity, and a residual after a polynomial fitting of the detector response curve, and we demonstrate how they are related to the residual FPN after the application of an NUC (the relationship with three common correction algorithms is discussed). A comparison with experimental data is also presented and discussed.
The alert did not successfully save. Please try again later.
Paolo Mariani, Stefano Zatti, Claudio Giunti, Barbara Sozzi, Emanuele Guadagnoli, Antonio Porta, "Thermal imager fixed pattern noise prediction using a characterization of the infrared detector," Opt. Eng. 53(12) 124106 (23 December 2014) https://doi.org/10.1117/1.OE.53.12.124106