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Abstract. Laser scanning systems that simultaneously measure multiple wavelength reflectances integrate the
strengths of active spectral imaging and accurate range measuring. The Finnish Geodetic Institute hyperspectral
lidar system is one of these. The system was tested in an outdoor experiment for detecting man-made targets
from natural ones based on their spectral response. The targets were three camouflage nets with different struc-
tures and coloring. Their spectral responses were compared against those of a Silver birch (Betula pendula),
Scots pine shoots (Pinus sylvestris L.), and a goat willow (Salix caprea). Responses from an aggregate clay
block and a plastic chair were used as man-made comparison targets. The novelty component of the experiment
was the 26-h-long measurement that covered both day and night times. The targets were classified with 80.9%
overall accuracy in a dataset collected during dark. Reflectances of four wavelengths located around the 700 nm,
the so-called red edge, were used as classification features. The addition of spatial aggregation within a 5-cm
neighborhood improved the accuracy to 92.3%. Similar results were obtained using a set of four vegetation
indices (78.9% and 91.0%, respectively). The temporal variation of vegetation classes was detected to differ
from those in man-made classes. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License.
Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.OE
.54.1.013105]
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1 Introduction

1.1 Background

Over the previous decade, new studies have begun to discuss
the convergence of two popular and well-established remote
sensing techniques, namely spectral imaging and light detec-
tion and ranging (LiDAR). Both techniques are being used in
a wide range of different remote sensing applications.
However, they both have limitations that prevent their effec-
tive use in all measurement settings. Spectral imaging sys-
tems use passive sensors that depend on external lighting
sources, thus making a measurement setting sensitive to
shading and diffuse lighting effects. Moreover, spectral im-
aging systems cannot provide direct ranging information on
the targets. Contrary to this, laser scanning instruments
provide an accurate object structure in three dimensions,
but are inherently limited to work on a single wavelength.
Furthermore, some laser scanning instruments alter their
transmission intensity so as to further improve their ranging
accuracy, but this limits the usability of their intensity val-
ues.1,2 Since the strengths of each of the two techniques com-
plement the main weaknesses of the other, their combined
usage offers clear synergies for obtaining the information,
e.g., classification, required in an accurate analysis of com-
plex environments.

First studies with the combined use of spectral imaging
and laser scanning data have often been about improving

forest and land class recognition from airborne data.3–9

The results of these studies have shown a clear trend in
improving overall classification accuracies over single-
sensor results.3,8,9 Additionally, forest studies have moved
from overall forest type mapping to tree species level.
Classification can be carried out even for individual tree
crowns in the most optimal cases.4 Some data fusion studies
have also been carried out at ground level.10 In these studies,
the viewing geometry causes extra complications with pas-
sive imaging sensors: abrupt changes in lighting and shad-
ows make accurate radiometric calibration of spectral data
challenging, if not outright impossible. However, even with
these difficulties, it has been possible to classify individual
tree species in the test scene with relatively high accuracy
while at the same time limiting the overall number of clas-
sification features.

The combined use of spectral and spatial data offers
clear advantages over single-sensor results. However, this
approach still has its limitations: first, the use of passive im-
aging would still make the measurement dependent on exter-
nal lighting conditions. Second, multiple sensor datasets are
typically collected with different measurement platforms and
at different times, although some platforms are capable of
simultaneous data collection.11,12 Datasets collected from
the same area but at different times are affected by environ-
mental factors that alter their response and need to be
calibrated. Such effects include, for example, changes in
radiometric response due to air and ground moisture, spatial
changes in the measurement due to wind (short time differ-
ence) or seasonal changes (long difference). Temporal effects*Address all correspondence to: Eetu Puttonen, E-mail: eetu.puttonen@fgi.fi
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affect both passive and active systems alike. Third, a combi-
nation of two or more separate datasets requires, in most
cases, additional data processing, so that the measurement
area and targets within it can be described in a unified man-
ner. All additional processing steps during data fusion, such
as interpolation, spatial scaling, and sensor cross-calibration,
add to the uncertainty in data interpretation and extend the
analysis time.

The best way to overcome the limitations related to com-
bined data use is through measurement systems that integrate
active spectral sensing with LiDAR ranging. The conver-
gence toward this kind of a system has been approached
from two main directions that we call “the LiDAR approach”
and the “active imaging approach.”

In the LiDAR approach, data are collected with a single-
laser scanning system that simultaneously transmits and
records two or more discrete wavelengths, or else such a sys-
tem is simulated with multiple scanners.13–22 This type of
system was modeled as early as 2009.13 Structural three-
dimensional (3-D) information with additional spectral infor-
mation yields more detailed information e.g., for studying
forest canopy properties and biomass,23–25 or for detecting
and classifying different object types.14,18 The setback of
using multiple individual, monochromatic, laser sources is
that it limits the available spectral range. Additionally, the
most common available laser wavelengths may not be opti-
mal for spectral analysis. In the active imaging approach, the
target scene is illuminated with a hyperspectral light source
and the backscattering light is recorded either on a pixel or
image basis.26–28 Active imaging applications have been
widely studied over the previous decade, including detection
through limited visibility (e.g., haze, dust, smoke), foliage-
and camouflage penetrating vision, and target detection and
classification (Ref. 29 and references therein). However,
these systems directly cannot provide the 3-D structure of
the scene, which may limit target detection when targets
are spatially mixed with the background.

At present, new integrated systems with simultaneous
ranging and flexible wavelength selection capabilities have
been presented.30,31 The Finnish Geodetic Institute’s (FGI)
Hyperspectral lidar (HSL) system is one of these. Its devel-
opment path has followed the active imaging approach. The
earlier versions of the HSL did not provide ranging informa-
tion, which in early studies was provided with a separate
laser scanner.32,33 The ranging capability was added later
with time-gating, making the system an independent inte-
grated hyperspectral laser scanning platform.30 The ranging
setup has been shown to work in tree species classification34

and in monitoring the chlorophyll content change in Scots
pine (Pinus sylvestris L.).35

In this study, we aim to further examine the feasibility of
the FGI HSL system in a potential new measurement con-
cept, where temporal changes in the spectral and spatial
responses of natural and man-made targets are detected
over a diurnal cycle (24 h) in an outdoor setting. This study
opens up whole new possibilities of mapping temporal
changes. It will be possible not only to detect changes in
the targets’ spectral responses, but also in their shape due
to changing lighting conditions. Our hypothesis is that the
temporal aspect in data can be exploited to help in the detec-
tion of man-made objects within the target scene, even if
the spectral response of artificial targets resembles that of

live vegetation. We also monitor the change in spectral
response over the measurement cycle in order to ascertain
whether temporal changes in spectral response cause target
mixing.

The study is, to our knowledge, among the first of its kind.
Laser scanning studies about change detection do exist, but
they usually consider longer time scales of several days,
weeks, or months, where individual measurements are
repeated once per day or less, e.g., in landslide analysis,36

fluvial studies,37,38 or forestry.39,40 There have also been sen-
sor calibration studies, e.g., Ref. 41, with a few measure-
ments both in the day and night time with the aim of
validating the proper working of a sensor. Also, a new opera-
tional system, VegNET, has recently been introduced for
long-term forest monitoring,42 but its design is not aimed
at individual object detection as it has limited spatial reso-
lution and scans are mainly performed during the night.

At present, hyperspectral laser ranging systems are
mainly developed and utilized in the laboratory. Passive sen-
sor systems cannot provide radiometrically stable results in
lighting conditions that vary between no-light and full day-
light. In this study, we investigate the capability of the HSL
to detect spectral and spatial changes in an outdoor measure-
ment setting. Moreover, as an early concept study, not all
results have a direct comparison point. Thus, the analysis
mainly focuses on spectral trend changes within the meas-
urement area, and the spatial separation of the objects of
interest is performed manually. Furthermore, the spectral
trend analysis is extended to cover several common vegeta-
tion indices. The indices have been originally developed for
multispectral and hyperspectral remote sensing platforms in
order to detect particular biological activities or organic com-
pound concentrations in biomass.

2 Equipment
This section describes the equipment used in the experiment.

2.1 FGI Hyperspectral Laser Scanning System

The FGI HSL is a laser scanning system that transmits hyper-
spectral (white) laser pulses with a continuous spectrum of
400 to 2500 nm to the target. It can measure up to eight sep-
arate wavelength bands from returning pulses. The number
of bands is limited by the spectral sensitivity of the silicon
detector, but the wavelengths are selectable within the trans-
mittance range. In this study, seven wavelength bands
ranging from 500 to 980 nm are used in target analysis. The
full-width at half-maximum of the channels was about
20 nm. A 1278-nm short wave(length) infrared band was
also measured using a separate detector, but its stability
was so low that its data were not utilized in the analysis.

The main components of the HSL system are the SM5-he
supercontinuum laser source (Leukos, Limoges, France),
a two-dimensional scanning mechanism (Newport Corp.,
Irvine, California), the wavelength separating spectrograph
(Specim, Oulu, Finland), 16-channel high speed detector
element (First Sensor AG, Berlin, Germany), and the meas-
urement computer with digitizer cards (National Instruments
Corp., Austin, Texas). The HSL works by sending laser
pulses to the target in a sweeping pattern and then recording
returning waveforms for each wavelength band detected. The
waveforms are digitized with a 1-GHz frequency, thus giving
the system a nominal 15-cm range resolution. However,
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individual laser pulses can be localized to the waveforms
with a practical resolution of a few centimeters. The HSL
can measure up to 5000 waveforms per second and a maxi-
mum of three discrete returns are fitted in each waveform.
Table 1 lists the properties of the HSL laser source and
optics.

A more detailed description of the HSL system, its prop-
erties, and its measurement configuration are given in articles
by Hakala et al.30 and Nevalainen et al.43

2.2 Other Equipment

A digital remotely readable thermometer with a relative
humidity sensor was used in monitoring the temperature

and humidity changes over the experiment. The thermometer
was a consumer grade device, so its results are used quali-
tatively so as to detect possible larger trends during the
experiment, especially the relative humidity values that
were not calibrated beforehand. The thermometer was placed
within a few meters of the targets.

3 24-h Experiment Setting

3.1 Test Area

The test area of 7 × 20 m2 was located in Southern Finland
(N. 60° 9.674′, W. 24° 32.807′), near the city of Helsinki.
The area included a small Silver birch (Betula pendula),
low understory, and a large Silver birch and goat willows
(Salix caprea) at the back of the measurement range. The
area was surrounded on its eastern side with a sparse,
half-open canopy of full-grown birches that gave mixed
shading on to the measurement area depending on the loca-
tion of the sun. The nearby FGI building was located on the
western side of the target area so it did not cast a shadow on
the target area until close to sunset, at which time the shadow
of the building shaded the target area for about half an hour
before sunset.

The test area and measurement schematic are illustrated
in Fig. 1.

3.2 Experiment Setting and Measurement
Preparations

The target setting consisted of three camouflage nets and
both spectral and geometric reference targets. A small
Silver birch (B. pendula), shoots of Scots pine (P. sylvestris
L.), and stems and leaves of goat willow (S. caprea) that
were also located within the scene acted as natural compari-
son targets. A plastic chair under one of the nets and a gray
block made of Lightweight Expanded Clay Aggregate
(LECA®), also called “LECA” in the text, were used as
man-made comparison targets. Table 2 lists the different

Table 1 Finnish Geodetic Institute Hyperspectral Lidar laser source
and optics properties.

Laser LEUKOS-SM-X-OEM

Spectral range 420 to 2100 nm

Average output power 41 mw

Repetition rate 5.3 kHz

Pulse width ≤1 ns

Central wavelength of the detected
channels (nm)

545.5, 641.2, 675.0, 711.0,
741.5, 778.4, 978.0

Channel full-width at
half-maximum (nm)

20

Collecting optics field-of-view 0.2 deg, 3.5 mrad

Transmit optics field-of-view 0.1 deg, 1.7 mrad

Scanning resolution horizontal 0.1 deg, 1.7 mrad

Scanning resolution vertical 0.02 deg, 0.3 mrad

Fig. 1 Themeasurement scene from the side (a) and above (b). Manually delineated target classes used
in analysis are shown by different colors. Scanner was located in the origin.
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targets in the measurement scene and their relative sizes in
terms of laser beam returns.

Spectral references included two Spectralon reference
panels, one white with a 99% reflectance and one multilevel
panel (12-25-50-99 reflectances). Their purpose was to mon-
itor the stability of the laser intensity during the experiment.

The geometric reference targets were four styrofoam
spheres (25-cm diameter) that were set around the birch.
They were used to provide an internal georeference for
additional point clouds collected with a separate TLS
system (HDS6100, Leica Geosystems Inc., Heerbrugg,
Switzerland). The separate datasets were collected once in
daylight and once in the dark so as to provide a high reso-
lution spatial cross-reference of the scene.

The camouflage nets were placed in the measurement
scene after sunset and left there for the remainder of the
measurement. The nets were measured over the night and
in the sunlight over the next day. The nets were typical cam-
ouflage nets available in outdoor and army surplus stores.

Their main use is in hunting and in wildlife photography
to meld people and man-made objects into the background.
Their general properties are listed in Table 3.

Target items Camo 1 and Camo 2 had similar coloring on
both of the sides that resembled green foliage. Target Camo 3
had a double-sided print with one side resembling green
vegetation and the other resembling dry vegetation or
sand. Targets Camo 2 and Camo 3 had similar structural
properties. Their surfaces were smooth with regularly scat-
tered holes. The hole diameters were about 3 mm in size.
Target Camo 1 differed from the other two structurally. It
was made with patches of fabric attached loosely on an
underlying net. The patches were partially interlaced when
the target Camo 1 was spread out leaving holes up to few
centimeters in diameter in a random pattern.

The HSL was located on the edge of the test area. A trans-
portable garden tent was set up to cover the laser scanner
and to protect it from condensing water, direct sunlight, and
dust. A fan heater was also applied to prevent moisture from
condensing on scanner surfaces.

Before scans were taken, a range-dependent intensity cal-
ibration was performed by taking the white reference panel
to different distances from the scanner and by measuring its
reflectance for a few seconds at a time. This guaranteed sta-
ble reflectance detection for the calibration. During scans,
the intensity range-dependency for each point was corrected
using interpolated reference values. Intensity range-calibra-
tion data were collected at up to a 12-m distance which
covered all targets in the scene. At more than 12 m, only
a point location was determined.

The HSL scanner distance to the birch stem was about
7.2 m and about 8.5 m to the camouflage nets. A fixed scan-
ning window of 75-deg wide in a vertical and 21-deg wide in
a horizontal direction was set to cover all targets and
the references. The scanning distance was limited to 15 m
from the scanner after which all returns were filtered during
a scan.

Spectralon reference panels were set on the sides of the
test area (white panel on the left, multilevel on the right) at
roughly the same distance as the birch. During night hours,
the white panel was taken into the green-house between
scans to prevent surface condensation.

3.3 Scanning Process

A total of 30 scans were performed over a 26-h time-frame.
A single scan took about 17 min from start to finish, in which
time the whole scanning scene was covered.

The scans followed a common pattern throughout the
measurement. Scans were repeated once per hour except dur-
ing sunset (about 19:55, GMT+3) and sunrise (about 6:40,

Table 2 General description of the manually delineated target point
clouds in the measurement scene.

Target name
Target
code

Average number of
pointsa

Number of
scans

Aggregate clay block LECA 3880� 580 30

Birch stemb Birch, S. 11750� 670 30

Birch canopyb Birch, C. 116370� 15360 30

Willow stems Willow, S. 10070� 3320 30

Pine shoots Pine 5550� 280 30

Camouflage net 1c Camo 1 5710� 790 22

Chair under net 1c Chair 860� 70 22

Camouflage net 2 Camo 2 3100� 230 22

Camouflage net 3d Camo 3 1510� 130∕
2950� 220

12/10

aNumber of points for each object and their standard deviation aver-
aged over all scans.

bThe birch canopy and stemwere differentiated using a hard threshold
for vegetation index NDVI.

cThe plastic chair under the camouflage net 1 was differentiated using
a combined threshold for vegetation indices NDVI and REP Li (see
Table 4 for full index names).
dThe camouflage net 3 was double-sided and it was turned around
after 12 scans.

Table 3 Structural properties of the camouflage nets.

Target Structure Coloring

Camo 1 Textile patches on wire, eye-size of the wire mesh ∼5 cm Dark green, green (“Forest”)

Camo 2 Regular holes, hole size 3 mm in diameter Dark green, green, brown (“Forest”)

Camo 3, front Regular punctuation, hole size 3 mm in diameter Dark green, green, brown (“Forest”)

Camo 3, back Sand brown, brown, beige (“Desert”)
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GMT+3),44 when the scan interval was reduced to 40 min so
as to better resolve the possible effects of lighting change.

During each scan, the following attributes were docu-
mented to support data processing and interpretation: scan
time frame, temperature and relative humidity in the test
scene, windiness, sky cloudiness, general visibility (clear,
mist, or fog during night time), and any possible issues
affecting the scan or changes within or around the test
scene (e.g., possible surface moisture, ambient night lighting
from street or FGI building lights). All attributes were doc-
umented on a qualitative level, as their purpose was to
explain possible data discontinuities or drastic changes in
noise level (e.g., significant spatial noise due to gusts of
wind during a scan).

The laser source was kept powered up over the whole
experiment to minimize intensity fluctuations resulting
from switching the laser power source on and off.

4 Data Processing

4.1 Raw Data Conversion

The conversion of raw waveforms to usable spectral point
cloud data included the following procedures. First, negative
overshoot and ringing effects were removed from a signal.
Then, the waveforms were normalized with the transmit
pulse intensity. Laser pulse intensity and time of flight
were determined using the widths and the positions of the
trigger and return pulse echoes. Next, the intensities were
then converted to backscattered reflectance by applying the
distance and spectral calibration. After this, up to three
Gaussian peaks were fitted to the waveforms to determine
return echo positions. The last step in the spectral point
cloud production was to combine the backscattered reflec-
tance spectra with the corresponding times-of-flight and
concurrent scanner orientation data. See Hakala et al.30 for
detailed preprocessing descriptions.

After the raw data were preprocessed, they were con-
verted into a compressed binary format (.laz) for faster
data access and smaller storage size.45

4.2 Target Delineation and Spectral Normalization

After the preprocessing steps, the targets listed in Table 1
were manually delineated from the point cloud. The manual
delineation was carried out for each target with a few cen-
timeters tolerance. Targets were not spatially mixed except in
the case of the camouflage net Camo 1 and the plastic chair.

Before analysis, the point intensities were normalized
using the white spectralon panel as a reference. A circular
section of about 15 cm in diameter was selected from the
center of the panel. The median value of all point intensities
within this area was then used to normalize the intensities of
all the other points in that scan. Omitting the edge points
guaranteed better spectral stability for scene normalization.

Normalized backscattering intensities of all channels
were saved for each measured point. Backscatter values
smaller than zero were set to zero as their values were a result
of instrumentation noise (and/or results from misfitted wave-
forms). Similarly, occasional high backscatter intensity val-
ues were limited to two as they were probably misinterpreted
intensities. Each scan was normalized separately to limit the
effects of inherent intensity fluctuation in the laser source.

4.3 Vegetation Indices

After backscattering intensity normalization, a set of 29 veg-
etation indices were calculated for each laser return point
based on a previous study by Nevalainen et al. (Ref. 35
and references therein). After a qualitative visual inspection
of their target separation, eight indices were selected for
further analysis. The indices were selected based on their
relative rank as classification features. The index ranking
was calculated with the methods included in the Arizona
State University (ASU) Feature Selection Repository (FSR)
(Ref. 46 and references therein). An ensemble of all ranking
results was collected and the most highly and frequently
ranked indices were selected. They are listed in Table 4.
All the indices selected have been used to estimate vegetation
chlorophyll content in earlier literature.47 Normalized
Difference Vegetation Index (NDVI) has also been used to
estimate vegetation Leaf Area Index and green biomass.48

Vegetation indices have been developed for specific
remote sensing systems. Thus, wavelength channels and
their widths measurable with the FGI HSL system do not
match precisely with those of the indices. In such cases,
we opted to use the nearest available channels to replace
the missing ones. This selection meant that the results of
indices with one or more wavelength channels replaced can-
not be interpreted or compared directly with the original
ones. However, this was not critical to the experiment, as
its purpose was to test the potential of HSL data for general
object classification.

Due to the wavelength channel compensation and notable
noise in the data, each vegetation index value was filtered
once again before analysis in order to remove overflow
and NaN points. The new filtration step was individually
carried out for each vegetation index as the discontinuities
affected different points in the cloud.

4.4 Spectro-Spatial Object Presentation and
Its Interpretation

After spatial delineation and vegetation index calculation,
each object in the measurement scene was represented
with a spectro-spatial representation (SSR). Each SSR con-
tained information about the point cloud structure, point-
wise values of normalized backscattering intensities and veg-
etation indices, and echo and total number of point returns.
The objects that were present over the whole experiment
had 30 SSRs each, whereas the camouflage nets that were
later placed in the scene had 22 SSRs each. The SSRs
allowed the monitoring of possible changes in the shape and
spectral responses of objects over the duration of the whole
experiment.

5 Results

5.1 Variance in Target Spectral and Vegetation
Index Responses

Figure 2 illustrates the median spectra of all targets in the
measurement scene after an individual scan. The figure
shows some general trends in the target spectra. The Birch
stem and the chair spectra that were separated with a priori
thresholds in NDVI and red edge position linear interpolation
(REP Li) clearly have a different median spectrum compared
to other targets. LECA block has a flat median spectrum over
the measured spectral range making it separated from other
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classes for wavelengths around and over 750 nm. All other
object median spectra have relatively similar shapes, but
some variation is present at the longest measured wave-
length, 978.0 nm.

However, the classification task is more complicated than
the median spectra imply. There exists significant spectral
overlap between different target spectra due to the spectral
variance within object point clouds. All target point clouds,
excluding the Chair, consist of thousands of laser hits

collected during a single scan. As target shapes and surfaces
in the measurement scene were irregular, this means that the
individual laser hits occurred at varying angles of incidence
and thus there is a wide variation in the point reflectances.
These variations are illustrated for each object point cloud
in Fig. 3.

Figure 3 illustrates significant variance in the spectral
returns for all target point clouds. The spectral returns over-
lap between the classes at several different wavelengths.
Moreover, confidence intervals between the 25th and 75th
percentiles are at the same level for most targets. In practice,
this means that attempting to classify an individual point
based on its spectral response is likely to be erroneous.
A clear example of this is the high variance of the birch
stem (Birch, S.) returns whose confidence interval covers
roughly half of the reflectance range for the red and near-
infrared (NIR) regions. The reason for the wide spread in
the spectral response of the stem is a result of its round
shape and black and white bark, which together emphasize
the effect of incidence angle.

The wavelength has a clear effect on the spectral
responses of the targets. All targets with foliage or material
trying to simulate it have an increasing spectral response and
interquartile variance at longer wavelengths. The remainder
of the targets, namely the LECA block, the chair (Chair), and
the birch stem (Birch, S.), show a much weaker increase.
The increase in overall spectral response at longer wave-
lengths is expected for foliage due to the red edge close
to 700 nm. However, the results also show that the variances
within the camouflage net point clouds also increase.

Moreover, the following remarks were also made on
the targets’ spectral responses. First, the LECA block had

Fig. 2 The median reflectance spectrum of all targets. The situation
during scan 11 (at 22:00 h local time, dark hours). All channel values
are spectrally separate and the dashed lines between the measured
channels are not an approximation of the actual spectrum, but a visual
cue to ease interpretation.

Table 4 Vegetation indices selected for target differentiation. The index formulas have been adapted to correspond to the nearest available HSL
wavelength channels. Relation column lists typical uses for each selected vegetation index. These include chlorophyll (Chl), Leaf Area Index (LAI),
and biomass (bio) detection. The index REP Li is also included as it was used to differentiate targets Camo 1 and Chair from each other. The indices
are ordered based on their relative significance as classification features.

Vegetation
index Full index name HSL adapted formula Original formula Relation

NDVI49 Normalized Difference
Vegetation Index

ðR778 − R674Þ∕ðR778þ R674Þ ðR800 − R670Þ∕ðR800þ R670Þ Chl, LAI, bio

OSAVI50 Optimized Soil-Adjusted
Vegetation Index

ð1þ 0.16Þ × ½ðR778 − R674Þ∕
ðR778þ R674þ 0.16Þ�

ð1þ 0.16Þ × ½ðR800 − R670Þ∕
ðR800þ R670þ 0.16Þ�

Chl

NDRE51 Normalized Difference
Red Edge

ðR778 − R711Þ∕ðR778þ R711Þ ðR790 − R720Þ∕ðR790þ R720Þ Chl

RDVI52 Renormalized Difference
Vegetation Index

ðR778 − R674Þ∕½pðR778þ R674Þ� ðR800 − R670Þ∕½pðR800þ R670Þ� Chl, LAI

Gitelson53 Gitelson 1∕R711 1∕R700 Chl total

GNDVI54 Green Normalized Difference
Vegetation Index

ðR778 − R545Þ∕ðR778þ R545Þ ðR800 − R550Þ∕ðR800þ R550Þ Chl

TVI55 Triangulated Vegetation Index ð1∕2Þ × ½ð674 − 545Þ × ðR741 − R545Þ−
ð741 − 545Þ × ðR674 − R545Þ�

ð1∕2Þ × ½ð670 − 550Þ × ðR750 − R550Þ−
ð750 − 550Þ × ðR670 − R550Þ�

Chl, LAI

DD47 Double Difference ðR741þ R674Þ − 2 × R711 ðR750 − R720Þ − ðR700 − R670Þ Chl total

REP Li56 Red Edge Position Linear
Interpolation

710þ ð778 − 674Þ × ½ðR674 − R778∕2Þ−
R710�∕ðR741 − R710Þ

700þ ð780 − 670Þ × ½ðR670 − R780∕2Þ−
R700�∕ðR740 − R700Þ

Chl
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the most consistent returns and the smallest variance over
the measured wavelength range. Second, the birch stem
(Birch, S.) showed both the highest variance and the highest
absolute returns over the measured wavelength range.
Returns from the plastic chair (Chair) also presented clear
a deviation from both the foliage and camouflage nets
below and around 700 nm. After this, its lower boundary and
median returns started to get closer to that of the other
targets.

For the vegetation, the returns from the willow stems
(Willow, S.) were clearly brighter than the foliage-only
hits of the birch canopy (Birch, C.) and pine shoots
(Pine). The probable reason is that the willow hits contained
a mix of leaves, branches and stems that could not be differ-
entiated with a single-feature threshold as in the case of
the birch. This characteristic also separates the willow
object from camouflage nets in the visible wavelengths, but
the differences become less distinct with increasing wave-
lengths: first with Camo 2, then with Camo 3, and finally
with Camo 1 at 978.0 nm.

Pure hits from foliage, i.e., Birch canopy (Birch, C.) and
Pine shoots (Pine), are on the same level as the camouflage
nets in the visible red area (641.2 nm). However, their
spectral response becomes increasingly different as the
wavelength is increased over 700 nm. Near a 1000-nm
wavelength, all the nets have clearly higher median spectral
returns than the natural targets (Fig. 2), but spectral overlap
still exists (Fig. 3).

Overall, the spectral responses of the targets overlap each
other on several wavelengths. Moreover, the target character-
istics were calculated here using manually separated point
clouds. In field conditions, it is likely that different target
types are mixed together at least to some extent and thus
render already small spectral differences undetectable.

To account for such cases, we tested the eight selected
vegetation indices so as to determine whether some of

them could give even higher separations between the targets
than pure spectral differences. Our hypothesis was based on
the assumption that since vegetation indices are derived to
correspond with particular spectral responses in vegetation,
then any deviation from these would imply that the target
could be (in part) of inorganic or man-made origin.

The results of this test are shown in Figs. 4 and 5. In Fig. 4,
the indices were NDVI, Optimized Soil-Adjusted Vegetation
Index (OSAVI), Normalized Difference Red Edge (NDRE),
and Renormalized Difference Vegetation Index (RDVI).
In Fig. 5, the indices were Gitelson, Green Normalized
Difference Vegetation Index (GNDVI), Triangulated
Vegetation Index (TVI), and Double Difference (DD). The
results showed both similarities and clear differences with
the reflectance responses. The LECA block, birch stem
(Birch, S.), and chair (Chair) showed similar responses in
half of the indices. Their responses differentiated them clearly
from rest of the targets that were of green vegetation or simu-
lated such. The separation of the birch stem and the chair is
probably related to their initial segmentation where a hard
NDVI threshold of under 0.3 was used for the birch, and a
hard REP Li threshold of over 705 and an NDVI threshold
of under 0.3 were used for the chair.

Although the interquartile ranges of the camouflage net
returns mainly overlap with those of the green vegetation,
there are also clear differences between them. In Fig. 4,
Camo 1 and Camo 3 to some extent stand out from all
other targets when viewed with NDRE that is developed to
correspond to the red edge in the target spectrum. Also, the
interquartile range of Camo 2 is always on the lower end of
the range of the vegetation targets.

In Fig. 5, all camouflage nets show a higher than average
response in GNDVI compared to the other targets. Also,
Camo 1 and Camo 3 have higher overall return values in
DD. Camo 1 also clearly shows a higher response to the
Gitelson index than any other target.

Fig. 3 Variance of spectral response over target point clouds in wavelength channels of (a) 641.2,
(b) 675.0, (c) 711.0, and (d) 778.4 nm. The center line of the boxplots marks the 50th percentile (median)
of the point cloud, and the upper and lower edges of the box mark the 25th and 75th return percentiles,
respectively. About 99% of all points are within the black vertical lines. Outlying points are marked with
red crosses. Target names are abbreviated as listed in Table 2. The situation during scan 11 (at 22:00 h
local time, dark hours).
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5.2 Target Differentiation Based on Their Spectral
and Vegetation Index Response

To see the effect of variance in automatic classification, we
classified the spatially delineated object point clouds using a
k-nearest neighbor algorithm (kNN, k ¼ 5, Euclidean dis-
tance). We used an implementation available in MATLAB
Statistics Toolbox, but the algorithm is also readily available
on other scientific toolboxes and libraries.

The object point clouds were classified with ten-fold
cross-validation. Since the birch canopy (Birch, C.) had

significantly more points than the rest of the objects, a ran-
dom sample of 15,000 points was taken from it before the
training and the cross-validation. This was done to prevent
a training bias. However, all remaining birch canopy points
were classified during the object prediction.

After cross-validation, we also tested the effect of spatial
aggregation on classification results. Since the hypothesis
was that an individual point that may be misclassified
due to the high variance in point responses in the spectral
domain, the goal of the aggregation was to determine if

Fig. 4 Division of the 25th, 50th, and the 75th percentiles of vegetation indices (a) NDVI, (b) OSAVI,
(c) NDVI, and (d) RDVI for the target objects in the scanning scene during scan 11 (at 22:00 h local
time, dark hours). Target name abbreviations are the same as in Table 2. Vegetation index listing is
given in Table 4.

Fig. 5 Division of the 25th, 50th, and the 75th percentiles of vegetation indices (a) Gitelson, (b) GNDVI,
(c) TVI, and (d) DD for the target objects in the scanning scene during scan 11 (at 22:00 h local time, dark
hours). Target name abbreviations are the same as in Table 2. Vegetation index listing is given in Table 4.
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the classification information in the local point neighborhood
in the spatial domain would smooth out the variance and
result in improved classification accuracy. The aggregation
assumption was made because individual point return foot-
prints were considerably smaller than the object dimensions.
The point aggregation was performed by calculating a 3-
dimensional binary tree (so called k-d tree) of the combined
object point cloud and then taking the most frequent class of
the points within a preset distance.

The overall classification results of the cross-validation
and subsequent spatial aggregation with different point
neighborhoods are shown in Table 5. Table 6 shows the
class-wise user’s and producer’s accuracies for different
classes. Figure 7 illustrates the classification results in the
point cloud and the effect of spatial aggregation. The four
most significant spectral channels were selected using an
ensemble of all ranking results calculated with the ASU
FSR46 as in the case of vegetation indices. The four channels
were located at 641.2, 675.0, 711.0, and 778.4 nm (channel
numbers 2, 3, 4, and 6).

The results show the following: first, the best overall
classification results are obtained by using all reflectance
channels as classification features. However, the absolute
difference in classification accuracy when compared to the
results obtained with four most significant channels or
with the four most significant vegetation indices is within
5% points. Second, the use of all possible vegetation indices
or all reflectance values and indices does not improve the
overall classification results. Third, application of spatial
aggregation with a small preset value improves the overall
classification accuracy with over 10% points due to little
spatial overlap between the targets. This is clearly seen in
Fig. 6, where individual misclassified points are relabeled
after comparing them to their neighborhood. For systemati-
cally misclassified areas, as seen in Pine or in Camo 3, this
approach does not improve the overall result.

On a class-level, the Birch canopy, LECA block, and
Camo 2 are classified with the best producer’s accuracy.
Also Camo 1 is detected with a high accuracy. The remainder
of the targets with green foliage, namely Pine and Willow

Table 5 The overall classification results and their kappa coefficients for all nine targets. Targets were classified with a kNN classifier (k ¼ 5,
Euclidean distance). The most significant reflectance channels, vegetation indices, and their combinations were tested. Classifications were vali-
dated with 10-fold cross-validation. Spatial aggregation was performed on cross-validated results. The bolded cells mark the class-wise results
shown in Table 6.

Cross-validation
CV + spatial

aggregation, 5 cm
CV + spatial

aggregation, 10 cm

Features Overall (%) Kappa Overall (%) Kappa Overall (%) Kappa

4 Channels 80.9 0.56 92.3 0.78 93.0 0.79

7 Channels 83.1 0.60 92.6 0.78 93.2 0.80

4 VIs 78.9 0.52 91.0 0.73 91.5 0.75

8 VIs 74.9 0.45 89.3 0.68 89.7 0.68

4 Channels + 4VIs 81.1 0.56 92.0 0.76 92.6 0.78

7 Channels + 8 VIs 76.0 0.46 89.5 0.68 89.6 0.69

Table 6 The producer’s and user’s accuracies of all targets. Results are calculated using the cross-validation results and 5-cm spatial aggregation.
Corresponding overall results have emphasized background in Table 5.

4 Channels 4 VIs 4 Channels, 4 VIs

Class User Acc. (%) Prod. Acc. (%) User Acc. (%) Prod. Acc. (%) User Acc. (%) Prod. Acc. (%)

LECA 89.9 96.6 80.6 95.1 86.9 99.1

Birch, S. 63.8 77.4 67.8 74.2 67.2 75.9

Birch, C. 95.6 97.2 94.3 97.4 94.9 97.5

Willow, S. 80.4 72.6 77.3 40.9 80.5 59.7

Pine 92.2 55.8 79.7 48.5 88.2 51.6

Camo 1 87.9 87.6 87.7 87.5 89.0 88.0

Chair 0.0 0.0 0.0 0.0 0.0 0.0

Camo 2 87.4 95.1 73.7 92.6 86.1 94.0

Camo 3 96.1 17.1 95.9 14.4 97.6 22.6
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shoots, show lower accuracies due to mixing with the
Birch canopy. Camo 3 has a low producer’s accuracy due
to parts of it mixing with Camo 1 and the Birch canopy.
The Chair is not detected at all. The likely reasons for
this are its low total point number, spatial mixing with
Camo 1, and the use of spectral thresholding to separate
it from Camo 1.

5.3 Temporal Variance in Object Reflectance and
Vegetation Indices

Different target classes are distinguishable with a few cor-
rectly selected spectral or spectrally derived features at a
single instance. However, the effects of possible temporal
changes in spectral response over a day should also be
accounted for. Such changes can be induced by lighting
changes, wind, or moisture condensation on surfaces. Thus,
it is of interest to see how target responses develop and vary
during the day. Figure 7 visualizes the effects of temporal

changes in all target point clouds with pairs of three vegeta-
tion indices, namely NDVI, OSAVI, and NDRE. The indices
were selected based on their rank in feature selection
(Table 4).

The scatter plots in Fig. 7 show the following: (1) time-
related effects are shown as a spread in each target point clus-
ter. The spread is mainly linear meaning that the changes in
vegetation index values are correlated over time. The only
exclusion to this is the Willow stem response which
shows leveling in the left pane. (2) The overlap between
the individual classes is present at all times. However, the
relative order between classes mainly stays the same and
different target types (i.e., organic and inorganic) are still
clearly differentiated. For example, all targets with foliage
are in their own group as seen in the middle pane. Also, the
camouflage net Camo 1 stands out clearly due to its high
response in NDRE. These results imply that if a classifier
is trained with one dataset, then its prediction power is likely

Fig. 6 The classification results of the (a) manual reference classification, (b) kNN classification (k =
5k ¼5, Euclidean distance) with cross-validation and (c) the subsequent spatial aggregation with a
5-cm neighborhood. The four most significant reflectance channels were used in classification. The target
scene is viewed from the direction of the scanner.

Fig. 7 Target separation in feature space. Scatter plots show two vegetation indices at a time. Panel
(a) illustrates the scatter plot of NDVI and OSAVI, panel (b) NDVI and NDRE, and panel (c) OSAVI
and NDRE. Each point in the graph corresponds to a single-percentile value (10th to 90th) from a single
scan. Camouflage nets and the chair are shown by 198 points each (9 percentiles from 22 scans) and all
other targets are shown by 270 points each (9 percentiles from 30 scans).
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to remain for scans taken at other times given that the surface
characteristics do not change drastically (e.g.,. due to surface
condensation). Nevertheless, verification of this is out of
the scope of this article.

Figure 7 shows that the target class mixing remains over
the whole experiment. To investigate whether the time devel-
opment would provide any additional information on target
types, we made another time series visualization of the spec-
tral index changes in each target. Figure 8 shows the change
in the NDVI interquartile range of target point clouds over
time. The NDVI was selected as a vegetation index example
as was it was found to be the most significant index in feature
selection (Table 4).

The NDVI results are separately reported for the 25th,
50th, and the 75th percentiles to better describe possible
trends in the responses. The results are the following:
(1) inorganic material responses show relatively small trends
during the experiment. Overall, there is a slight change in the
response after sunset (dashed blue vertical line). Camo 1 and
Camo 3 show a slight increase in their NDVI, whereas for the
Camo 2 the response slightly decreases. For the LECA
block, its variance increases (due to growing maxima and
minima). After this, any changes and trends are weak
until sunrise (red dashed vertical line) where they revert
back to the daytime response. The sharp change in the
response of the Camo 3 close to sunrise derives from turning
it around to measure its other, differently colored, side. The
response from the chair under Camo 1 is relatively flat for
both the 50th and the 25th percentiles. The 75th percentile
shows a slight downward turn over the experiment time
frame. One contributing factor to the lack of notable changes
in the NDVI response from the chair is probably the use of
NDVI and REP Li filtration during preprocessing.

(2) The temporal variation in the NDVI was stronger for
organic targets. For birch canopy returns, the 25th percentile
does not show any trend and the median shows a slight
increase until 2 h after sunrise. After that the median is
reversed close to its starting value. However, the 75th per-
centile shows a steady increase after sunset which peaks
around sunrise. Then, the change is reversed for around

45 minutes about 2 h after sunrise. On the other hand, the
birch stem response was flat over the experiment. The
main reason for this was that the stem was differentiated
from the birch canopy point cloud with an NDVI threshold
that capped its highest value to 0.2. However, neither the
median nor the 25th percentile values, which were both
uncapped, show any clear trends. Pine shoots present a dif-
ferent temporal pattern. The 25th and the 50th percentiles
stay relatively constant until (solar) midnight after which
the responses begin to drop until 1 h before sunrise. Then,
the responses increase back to their daytime values about
2 h after the sunrise. The 75th percentile has a similar,
but much weaker, pattern. Willow stems show yet another
temporal variance pattern for the NDVI response. The
response starts to decline toward its minimum about two
and a half hours after sunset. The minimum is then reached
about an hour before sunrise. Return to the daytime values
happens about 2 h after sunrise. The changes in willows are
most pronounced in the 25th percentile, but are also clear in
the median response. In the 75th percentile, the changes are
still visible, but not as obvious.

Overall, all the organic targets in the experiment show
clear, albeit different, responses to diurnal variation. The spe-
cies-wise sequences differ from each other, but also have
common features. First, the return to their daytime values
seems to happen about 2 h after sunrise. Also, the decrease
in the response begins about the same time for both the pine
shoots and the willows.

6 Discussion

6.1 Spectral Separability of the Targets

All targets, except perhaps excluding the LECA block,
showed large variations in their spectral responses over a
whole point cloud when tested with different wavelengths
and vegetation indices. The variations were typically so
wide that there was overlap between several targets at the
given index values. One of the main reasons for the spectral
overlap was the small laser footprint hitting complex target
surfaces (about 20 mm in diameter at a 10-m distance). This

Fig. 8 Change of the (a) 75th, (b) the 50th, and (c) the 25th NDVI percentiles during the experiment for
the target point clouds. Reported times start from the first scan. Sunset (at 19:55) and sunrise (at 6:40)
are shown with vertical dashed lines, respectively, blue and red. Note: the birch stem point cloud was
defined with a hard NDVI threshold of 0.2 and its results are only indicative.
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is demonstrated by comparing the spectral variance of the
LECA block and the birch canopy. The LECA block,
which was the smoothest and had a continuous surface,
showed the most constant variance over the measured wave-
length range (Fig. 4). On the other hand, the birch canopy
that consists of thousands of small branches, twigs, and
leaves in different positions and angles shows limited vari-
ance at visible wavelengths that widen significantly when
moving into the NIR region. However, the target with the
widest variance was the birch stem. The reason is in its
white bark combined with black spots and a curved surface.
Therefore, returning signals may have hit either a bright or
a dark spot on the bark. In addition, the angle of incidence
with the laser signal and the stem may vary from parallel to
perpendicular. Together, this means that a single return from
a stem may have almost any reflectance value resulting in
significant variances.

These examples show the complexity of determining,
without additional information, where an individual point
return is coming from. However, the classification results
show that different classes could be still differentiated
with accuracies of over 85%. The accuracies are even higher
if similar classes are considered together. Such classes
include green vegetation (Birch canopy, Willow stems), cam-
ouflage nets, nongreen vegetation (Birch stem), and other
man made targets (LECA). This can be seen in Fig. 6
which illustrates how misclassifications mostly happen
within similar class types.

In this study, the targets were separately located in the
experiment setting and their point clouds could be manually
delineated. This allowed the use of supervised classification.
In natural conditions, the situation will definitely be more
complex. There, it is probably futile to classify an individual
point in an unsupervised manner without using any knowl-
edge of its immediate surroundings. However, the results
also show that with spatial aggregation it is possible to
locally bring out clear spectral differences between most
target types. This should improve their differentiation. A
manual separation, as performed here, is a possible option
for smaller datasets and spatially constrained cases. But,
from a practical point of view, automatized segmentation
routines and their combined use will be a close-to necessary
requirement for larger data sets. The literature has a wide
selection of different techniques available for different object
types both in the built and natural environments.57–60 In prac-
tice, an iterative approach that makes use of both spectral and
spatial cues of the known and expected object types will
probably be the most robust solution.

After the scene is segmented into suitable parts, a straight-
forward application of descriptive statistics can be applied
for target differentiation. Here, promising results were
obtained by calculating percentiles of both spectral inten-
sities and vegetation indices for objects in order to determine
their spectral properties. In this study, the number of classi-
fying features could be kept down to two or three to differ-
entiate natural and man-made target types from each other.
With a percentile approach, the point-wise feature variation
within individual target classes are dampened and class char-
acteristics become more evident. Here, percentile selection
covered the 25th, 50th, and 75th percentiles of the analyzed
features, thus avoiding extreme values. Moreover, just a few
percentiles per each selected wavelength or vegetation index

seemed to be sufficient for target separation if segmentation
had been successful.

6.2 Temporal Variation of Spectral Response in
Target Point Clouds

In addition to spectral separation of targets, this study
included a novel component of monitoring and detection
of possible effects induced by changing illumination or
nighttime conditions. To our knowledge, no similar tests
have been reported in the literature so far. In this experiment,
the measurement area was scanned with intervals of 1 h or
less, regardless of external lighting status and the increased
scan frequency revealed some interesting developments.
In imaging, longer term time-series studies have recently
been carried out both in the field61 and in the laboratory,62

but they are inherently limited to light hours or when
using external light sources. Additionally, measurement radi-
ometry and its calibration are complicated.

The results showed that the green vegetation presented
clear variance over time, whereas the variance within
man-made targets was much less pronounced. The temporal
variance is probably a real effect because: (1) the temporal
trends were detected both in the light and dark hours. This
means that the external illumination, which was nonexistent
during the night time, could not be a dominant factor driving
the changes. Similarly, the air was calm during the night
time, which rules out wind as a major contributing factor
for the trends, (2) the man-made objects within the scene
like the LECA block, camouflage nets, and reference targets
did not demonstrate nearly as large temporal changes as veg-
etation, excluding a modest increase in variance at late night.
Moreover, the changes differed between the targets, which
should also rule out pure equipment-related contributions
which would probably have shown as a similar drift in data.

Although none of the above factors were dominant, they
all added to the changes. Other factors contributing to the
detection are related to the targets themselves. When the
delineated point clouds of the whole birch (Birch, C. and
Birch, S.) and the willow stems (Willow, S.) were visualized
in rapid consecutive order, a detectable fluctuation could

Fig. 9 Spatial change in the birch canopy point cloud over night
hours. Panel (a) shows the point cloud shape variation for the
whole birch. Panels (b) and (c) show the point cloud variation with
more detail for branches marked with black boxes (upper and
lower, respectively) in the panel (a). The largest changes were
detected close to the sunrise. This has a clear visual correlation
with the changes detected in the NDVI response (Fig. 8). The scanner
was located to the left, in the origin.
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be noticed in their canopy shapes (Fig. 9). When the point
clouds were pseudocolored with a vegetation index, it could
be seen that the spatial change in the canopy induced a
change in the detected spectral response. A likely explana-
tion is that when the canopy shape changes a little, mainly in
the dark hours, then leaf inclinations change, and laser beam
backscatter happens at a different angle leading to a change
in the measured response. Although the absolute shape
change is subtle, it is canopy-wide and thus large enough
to cause a detectable effect in the point cloud statistics.
On the other hand, the coniferous pine shoots (Pine) did
not present a similar change in shape, while their spectral
response also showed a temporal trend. Possible reasons
for this may be that the footprint size should be even smaller
to detect possible changes on the needle level or moisture
condensation on the needles. However, determination of
the spectral changes in the pine sample will require further
studies in the future.

6.3 Summary

The results showed that it is possible to determine inorganic
camouflage nets from vegetation with the FGI HSL system.
The detection was based on differences in their spectral
response compared to those of vegetation. The nets were
best separated from other targets in the NIR region, located
over 700 nm. The spectral differentiation was obtained
after the point clouds were manually delineated from the
measurement scene, and the individual point variance was
reduced by taking percentiles of backscattering intensities
or vegetation indices. The object detection was performed
during the dark hours.

The temporal effects in all target spectra were also moni-
tored. According to the results, overlapping of spectral
responses between similar class types is likely when scans
have been taken at different times during a day. This means
that data acquisition times and conditions should be given
extra consideration even when radiometrically calibrated
data are available in order to avoid target mixing due to
temporal variance. However, even with temporal variance
included, the first qualitative results imply that it is possible
to discern man-made objects from vegetation in a suitably
selected feature space consisting of only a few different
wavelength channels around the so-called “red edge” near
750 nm or vegetation indices derived near it.

In natural conditions, where different target classes are
likely to have at least partial spatial mixing, the classification
task will be significantly harder, especially for automatized
processes. Such conditions will present a challenge to seg-
mentation routines due to returns and small continuous sur-
faces. Nevertheless, the task should be feasible at least to a
level, where man-made objects could be outlined into poten-
tially interesting segments for further inspection. Here, spa-
tial aggregation of points that were individually classified
with supervised classification was shown to already increase
overall classification accuracy using a close spatial range.
However, this approach typically requires that a priori infor-
mation about the target response is available and that scans
can be taken with an active multispectral or hyperspectral
laser scanning system. The plastic chair (Chair) that was
covered with the camouflage net Camo 1 is a good example
of this. Although the chair was not initially separable from
the point cloud, it could be differentiated using thresholds for

two vegetation indices that divided the mixed point cloud in
two. However, due to low number of returns and the small
continuous visible surface area, the chair could not be
detected as a separate class in a supervised classification.

Although the temporal effects complicate the object clas-
sification in correct target classes due to increased variance
in the spectral response and in shape for vegetation, they may
also have a potential for exploitation. Since vegetation
showed a larger temporal response this could be taken into
account during analysis if data are available from several
time points in different illumination conditions. However,
more studies are required to test whether quantitative analy-
sis is possible. Also, an open question remains as to whether
there are detectable differences between healthy and recently
cut vegetation over a short time difference. If the latter are
reliably detectable, they could provide a useful proxy for
locating man-made objects concealed within vegetation.

7 Conclusions
This study tested the FGI HSL and its capability to discern
man-made objects from natural ones based on their spectral
response. The experiment setting was novel in that the object
detection was monitored over a 26-h measurement time in an
outdoor setting. The measurement time was extended to
monitor the temporal changes of both spectral and spatial
target properties within the measurement scene. This type
of a measurement, where active spectral detection is inte-
grated with accurate spatial ranging, has only recently
become possible with new multispectral and hyperspectral
laser scanning systems.

The results showed that the man-made targets present in
the study scene were distinguishable from natural ones at
all times, even while the temporal variances and overlaps
between target spectral responses were significant. Accurate
object level separation was still deemed to be feasible with
a suitable selection of four or more wavelength channels or
vegetation indices derived from them. However, a prerequi-
site for successful detection was that the point cloud can be
segmented so that each segment will have enough points for
statistical analysis. Furthermore, spatial aggregation of indi-
vidually classified points was detected to increase the overall
classification accuracy of all objects. The misclassifications
between objects typically happened between similar target
types (e.g., green vegetation).

Another relatively weak but detectable effect in the data-
sets was that the point clouds of green vegetation targets
presented temporal variances that differed from that of the
man-made targets. The measurement setting limited the
detection of the effect to the qualitative level, and it needs
to be validated with future follow-up measurements. If the
effect can be validated and quantified, it might offer a valu-
able proxy to differentiate some of the vegetation in studies
where multitemporal data from several scans are available
from the same location.

The study showed the clear potential that hyperspectral
laser scanning systems have in changing lighting conditions.
As the first study of its kind with the FGI HSL, this experi-
ment has raised new research questions. These include algo-
rithm testing and development to improve the automatization
level in target detection, the validation and further quantifi-
cation of possible circadian shape changes in different
plant and tree species, and the further developments of
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simultaneous spectro-spatial experiments to cover a wider
group of targets in different environments.
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