You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
8 December 2015All‐fiber pulse coherent Doppler LIDAR and its validations
An all‐fiber pulsed coherent Doppler LIDAR (CDL) system is described. It uses a fiber laser as a light source at a 1.54‐μm wavelength, producing 200 μJ pulses at 10 kHz. The local oscillator signal is mixed with the backscattered light (of different frequency) in the fiber. The atmospheric wind speed is determined through the fast Fourier transform applied to the difference frequency signal acquired by an analog‐to‐digital converter card. This system was used to measure the atmospheric wind above the upper‐air meteorological observatory in Rongcheng (37.10°N, 122.25°E) of China between January 7 and 19, 2015. The CDL data are compared with sounding‐ and pilot‐balloon measurements to assess the CDL performance. The results show that the correlation coefficient of the different wind‐speed measurements is 0.93 and their discrepancy 0.64m/s; the correlation coefficient for wind‐direction values is 0.92 and their discrepancy 5.8 deg. A time serial of the wind field, which benefits the understanding of atmospheric dynamics, is presented after the comparisons between data from CDL and balloons. The CDL system has a compact structure and demonstrates good stability, reliability, and a potential for application to wind‐field measurements in the atmospheric boundary layer.