You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
11 September 2018Study of the first stages of laser-induced contamination
A vacuum chamber was designed to study the risk of laser-induced contamination (LIC) on optical payloads integrated on spaceflight missions. In this context, tests were performed with a nanosecond pulsed laser at 355 nm on fused silica substrates under toluene exposure with multiple laser irradiation. Specific experimental procedures are described in order to obtain repeatable results. Finally, series of tests were performed to investigate the onset of the LIC deposition process and its evolution over time. A slight antireflective effect is consistently observed at the onset of the deposition process. We suggest that this is an indication that the LIC deposition process in our experimental conditions starts with a nucleation layer consisting of small dense islands of deposit.
The alert did not successfully save. Please try again later.
Georges Gebrayel El Reaidy, Frank R. Wagner, Delphine Faye, Jean-Yves Natoli, "Study of the first stages of laser-induced contamination," Opt. Eng. 57(12) 121903 (11 September 2018) https://doi.org/10.1117/1.OE.57.12.121903