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Abstract. With the wide-spread availability of rigorous electromagnetic (vector) analysis codes for describing
the diffraction of electromagnetic waves by specific periodic grating structures, the insight and understanding of
nonparaxial parametric diffraction grating behavior afforded by approximate methods (i.e., scalar diffraction
theory) is being ignored in the education of most optical engineers today. Elementary diffraction grating behavior
is reviewed, the importance of maintaining consistency in the sign convention for the planar diffraction grating
equation is emphasized, and the advantages of discussing “conical” diffraction grating behavior in terms of the
direction cosines of the incident and diffracted angles are demonstrated. Paraxial grating behavior for coarse
gratings (d ≫ λ) is then derived and displayed graphically for five elementary grating types: sinusoidal amplitude
gratings, square-wave amplitude gratings, sinusoidal phase gratings, square-wave phase gratings, and classical
blazed gratings. Paraxial diffraction efficiencies are calculated, tabulated, and compared for these five elemen-
tary grating types. Since much of the grating community erroneously believes that scalar diffraction theory is only
valid in the paraxial regime, the recently developed linear systems formulation of nonparaxial scalar diffraction
theory is briefly reviewed, then used to predict the nonparaxial behavior (for transverse electric polarization) of
both the sinusoidal and the square-wave amplitude gratings when the þ1 diffracted order is maintained in the
Littrow condition. This nonparaxial behavior includes the well-known Rayleigh (Wood’s) anomaly effects that are
usually thought to only be predicted by rigorous (vector) electromagnetic theory. © The Authors. Published by SPIE under a
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1 Introduction
The fundamental diffraction problem consists of two parts:
(i) determining the effects of introducing the diffracting
aperture (or grating) upon the field immediately behind the
screen and (ii) determining how it affects the field down-
stream from the diffracting screen (i.e., what is the field
immediately behind the grating and how does it propagate).

A “diffraction grating” is an optical element that imposes
a “periodic” variation in the amplitude and/or phase of
an incident electromagnetic wave.1 It thus produces, through
constructive interference, a number of discrete diffracted
orders (or waves) which exhibit dispersion upon propaga-
tion. Diffraction gratings are thus widely used as dispersive
elements in spectrographic instruments,2–5 although they can
also be used as beam splitters or beam combiners in various
laser devices or interferometers. Other applications include
acousto-optic modulators or scanners.6

One example of a diffraction grating would be a periodic
array of a large number of very narrow slits. This would be a
binary amplitude grating (completely opaque or completely
transparent). Consider the cylindrical Huygens’ wavelet pro-
duced at each narrow slit when the grating is illuminated by a
normally incident plane wave as shown in Fig. 1. It is clear to
see that there will be constructive interference only in those

discrete directions where the optical path difference from
adjacent slits is an integral number of wavelengths (i.e.,
phase differences in multiples of 2π). Every point P in the
focal plane of the lens that satisfies this condition will exhibit
a primary maximum. The angular width of this interference
maximum depends upon the number of slits making up
the grating. Figure 2 illustrates the one-dimensional profile
of the Fraunhofer diffraction pattern of an array of slits as
we progress from two slits (Young’s interference pattern)
to three slits, to five slits, and to eleven slits.

The trend is evident. In the limit of a large number of very
narrow slits, the primary interference maxima (diffraction
orders) become narrower and narrower, with more and more
(n − 2) small secondary maxima in between them.

The first reported observation of diffraction grating
effects was made in 1785 when Francis Hopkinson (one of
the signers of the declaration of independence and George
Washington’s first Secretary of the Navy) observed a distant
street lamp through a fine silk handkerchief. He noticed that
this produced multiple images, which to his astonishment
did not change location with motion of the handkerchief.
He mentioned his discovery to the astronomer David
Rittenhouse. Rittenhouse recognized the observed phenome-
non as a diffraction effect and promptly made a diffraction
grating by wrapping fine wire around the threads of a pair of
fine pitch screws. Knowing the pitch of his screws in terms
of the Paris inch, he determined the approximate wavelength
of light.7
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Since the diffraction angle for a given order varies
with wavelength, a diffraction grating produces angular
dispersion. This angular dispersion is illustrated in Fig. 3
for a grating with a period d ¼ 10 μm. Diffracted orders
for wavelengths 450, 550, and 650 nm are plotted versus
angle.

Spectral resolution and diffraction efficiency are
quantities of practical interest in many diffraction grating
applications. The diffraction efficiency is defined as the
fraction of the incident optical power that appears in a given
diffracted order of the grating. Note from Fig. 3 that the
zero order exhibits no dispersion, and there is twice as
much dispersion in the second order as there is in the first
order.

Diffraction gratings can be categorized according to
several different criteria: their geometry, material, their
efficiency behavior, their method of manufacture, or their
intended application. We thus talk about:

amplitude and phase gratings;
reflection and transmission gratings;
binary gratings;
symmetrical and blazed gratings;
plane and concave gratings;
ruled, holographic, and lithographic gratings;

Bragg type and Raman-Nath type gratings;
waveguide gratings; and
fiber gratings.

We acknowledge that this list of grating types is non-
exhaustive and nonexclusive but none-the-less is useful
for comparing and contrasting grating performance for
different gratings types, characteristics, and manufacturing
techniques.

Joseph von Fraunhofer began his detailed study of diffrac-
tion gratings about 1821. He built the first ruling engine for
fabricating reflection gratings on metallic substrates. His
insight into the diffraction process led him to predict that dif-
fraction efficiency behavior would “strain even the cleverest
of physicists,” which it did for the next 150 years. Many of
Fraunhofer’s findings were written up in great detail, so we
are entirely justified in calling him the father of diffraction
grating technology.8,9

Fig. 1 Illustration of paths of superposed optical disturbances that
interfere constructively to produce discrete diffracted orders.

Fig. 2 The Fraunhofer diffraction pattern of an array of equally spaced narrow slits is illustrated as
the number of slits is increased: (a) two slits, (b) three slits, (c) five slits, and (d) eleven slits.
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A whole new era of spectral analysis opened up with
Rowland’s famous paper in 1882. He constructed sophisti-
cated ruling engines and invented the “concave grating,”
a device of spectacular value to modern spectroscopists.10

John Strong, quoting G. R. Harrison, stated in a JOSA
article in 1960—It is difficult to point to another single
device that has brought more important experimental infor-
mation to every field of science than the diffraction grating.
The physicist, the astronomer, the chemist, the biologist, the
metallurgist, all use it as a routine tool of unsurpassed accu-
racy and precision, as a detector of atomic species to deter-
mine the characteristics of heavenly bodies and the presence
of atmospheres in the planets, to study the structures of mol-
ecules and atoms, and to obtain a thousand and one items of
information without which modern science would be greatly
handicapped.”11

A troublesome aspect of the multiple order behavior of
diffraction gratings is that adjacent higher order spectra fre-
quently overlap. In fact, in Fig. 3, one can see the third-order
principle maximum for blue light almost overlapping the
second-order red principle maximum. One can readily show
that the second order for wavelengths 100, 200, and 300 nm
is diffracted into the same directions as the first order for
wavelengths 200, 400, and 600 nm.

Two generalizations to the behavior of gratings must now
be discussed. First, if the individual slits making up the gra-
ting have significant width (in order to transmit more light),
the Fraunhofer diffraction pattern of an individual slit will
form an envelope function modulating the strength of the
discrete diffracted orders.12–15 For the case illustrated in
Fig. 4, we have chosen the width of the slits to be one-third
of the slit separation. You will note that every third diffracted

Fig. 3 Illustration of angular dispersion produced by a diffraction grating.

Fig. 4 The Fraunhofer diffraction pattern of an array of eleven equally spaced slits whose width is one-
third of their spacing.
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order is absent. This is caused by the envelope function
going to zero at those locations.

The second generalization includes the situation where
the light is incident upon the grating at an arbitrary angle
θi rather than normal incidence. This situation will be taken
care of by including the incident angle in the grating equation
discussed in Sec. 2, where we will review the planar grating
equation and the sign convention for numbering the various
diffracted orders.

The more general phenomenon of “conical” diffraction
that occurs with large obliquely incident angles will be dis-
cussed in Sec. 3 and the parametric behavior will be shown to
be particularly simple and intuitive when formulated and dis-
played in terms of the direction cosines of the incident and
diffracted angles. In Sec. 4, we will use the remarkably intui-
tive direction cosine diagram to portray the conical grating
behavior exhibited in the presence of large obliquely incident
beams and arbitrary orientation of the grating. Section 5
examines the paraxial diffraction efficiency behavior of
several elementary grating types. Section 6 will review the
underlying concepts of nonparaxial scalar diffraction theory
and apply them to the sinusoidal and square-wave amplitude
gratings when the þ1 diffracted order is maintained in the
“Littrow condition.” This nonparaxial behavior includes
the well-known Rayleigh (Wood’s) anomaly effects that are
usually thought to only be predicted by rigorous (vector)
electromagnetic theory.16

A summary, statement of conclusions, and an extensive
set of references will then complete this paper.

2 Planar Grating Equation and Sign Convention
Monochromatic light of wavelength λ incident upon a refrac-
tive transmission grating (interface between two dielectric
media exhibiting a periodic surface relief pattern) of spatial
period d at an angle of incidence θi will be diffracted into the
discrete angles θm according to the following (planar) grating
equation:3,4,16–18

EQ-TARGET;temp:intralink-;e001;63;344n 0 sin θm − n sin θi ¼ −mλ∕d; m ¼ 0;�1;�2;�3;

(1)

where n is the refractive index of the media on the incident
side of the diffracting surface, n 0 is the refractive index of
the media containing transmitted diffracted light, and m is
an integer called the order of diffraction. The sign of m is
arbitrary and determines the sign convention for labeling
diffracted orders.

The equation for a reflection grating can be obtained by
setting n 0 ¼ −n, just as we do when tracing rays from
a reflecting surface:4

EQ-TARGET;temp:intralink-;e002;326;653 sin θm þ sin θi ¼ mλ∕nd; m ¼ 0;�1;�2;�3: (2)

Note that setting m ¼ 0 in Eq. (1) results in θ0 having the
same sign as θi. Likewise, setting m ¼ 0 in Eq. (2) results in
θ0 having the opposite sign as θi . We have thus adopted a
sign convention that conforms to that used in geometrical
optics whereby all angles are directional quantities measured
from optical axes or surface normals to refracted or reflected
rays. These directional angles are “positive if counterclock-
wise,” and “negative if clockwise.” An “angle” here is the
smaller of the two angles that a ray forms with the axis or
surface normal.

For a thin diffraction grating in air, we thus have
n ¼ n 0 ¼ 1, and the two grating equations can be combined
to yield

EQ-TARGET;temp:intralink-;e003;326;479 sin θm∓ sin θi ¼ ∓mλ∕d; m ¼ 0;�1;�2;�3: (3)

Here the minus signs describe a transmission grating and
the plus signs describe a reflection grating as illustrated in
Fig. 5. Note from this figure that the zero order corresponds
to the directly transmitted or specularly reflected beam.

The arrangement of the diffracted orders is the same for
the two gratings except they are reflected about the plane of
the reflection grating. Note also that the algebraic signs of
two directional angles are different if they are measured
on different sides of the grating normal. A final useful obser-
vation is that for both the transmission and the reflection gra-
ting, the positive diffracted orders lie on the same side of the
grating normal as the incident beam; whereas the negative

Fig. 5 Illustration of a thin (a) transmission grating and (b) reflection grating.
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diffracted orders lie on the opposite side of the grating
normal from the incident beam. A “plus” sign has thus been
placed on the lower side of the grating normal in Fig. 5 and
a “minus” sign has been placed on the upper side of the
grating normal as an indicator of our sign convention. Some
authors absorb the minus sign on the right side of Eq. (3)
into the m, thus achieving a seemingly simpler equation.
However, this results in a different sign convention for label-
ing the diffracted orders.

We have specifically chosen the form of Eq. (3) not only
to maintain the sign convention for directional angles used
almost exclusively in geometrical optics and optical design
ray trace codes (positive if counterclockwise and negative
if clockwise), but also to be consistent with the sign conven-
tion for labeling diffraction grating order numbers used by
the popular Diffraction Grating Handbook published and
distributed free by the Newport Corporation (formerly
Richardson Grating Laboratory).19

The above grating equations are restricted to the special
case where the grating grooves/lines are oriented perpendic-
ular to the plane of incidence, i.e., the plane containing
the incident beam and the normal to the grating surface. For
this situation, all of the diffracted orders lie in the plane of
incidence.

The more general phenomenon of conical diffraction
that occurs with large obliquely incident angles is rarely
discussed in elementary optics or physics text books.
However, the formulation of a nonparaxial scalar diffraction
theory20–23 provides a simple and intuitive means of gaining
additional insight into this nonparaxial diffraction grating
behavior.

3 Conical Diffraction in Direction Cosine Space
Consider diffraction from a conventional linear reflection
grating. However, suppose the incident light strikes the gra-
ting at a large oblique angle (represented by direction cosines
αi and βi) as illustrated in Fig. 6. The resulting diffraction
behavior is described by the following grating equation
written in terms of the direction cosines of the propagation

vectors of the incident beam and the diffracted orders (the
grooves are assumed to be parallel to the y axis):24

EQ-TARGET;temp:intralink-;e004;326;730αm þ αi ¼ mλ∕d; βm þ βi ¼ 0; (4)

where
EQ-TARGET;temp:intralink-;e005;326;688

αm ¼ sin θm cos ϕo; αi ¼ − sin θo cos ϕo; βi ¼ − sin ϕo:

(5)

The diffracted orders now propagate along the surface of
a cone and will strike the observation hemisphere in a cross
section that is not a great circle, but instead a latitude slice
as illustrated for a reflection grating in Fig. 6. Note that
the direction cosines are obtained by merely projecting the
respective points on the hemisphere down onto the plane of
the aperture and normalizing to a unit radius. Even for large
angles of incidence and large diffracted angles, the various
diffracted orders are equally spaced and lie on a straight line
only in the direction cosine space.

This behavior is even more evident in Fig. 7, in which the
location of the incident beam and the diffracted orders are
displayed in direction cosine space for a reflection grating
whose grooves are parallel to the y or β axis. The diffracted
orders are always exactly equally spaced in direction cosine
space and lie in a straight line perpendicular to the orienta-
tion of the grating grooves. From Eq. (4), this equidistant
spacing of diffracted orders is readily shown to be equal
to the nondimensional quantity λ∕d. The diffracted orders
that lie inside the unit circle are real and propagate, and the
diffracted orders that lie outside the unit circle are evanescent
(and thus do not propagate).

For a reflection grating, the undiffracted zero order
always lies diametrically opposite the origin of the α − β
coordinate system from the incident beam. As the incident
angle is varied, the diffraction pattern (size, shape, separa-
tion, and orientation of diffracted orders) remains unchanged
but merely shifts its position maintaining the above relation-
ship between the zero order and the incident beam. Note also
that when the plane of incidence is perpendicular to the

Fig. 6 Illustration of the position of the diffracted orders in real space
and direction cosine space for an arbitrary (skew) obliquely incident
beam.

Fig. 7 Relative position of diffracted orders and incident beam in
direction cosine space for a reflection grating. Diffracted orders
outside the unit circle are evanescent.
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grating grooves (ϕ0 ¼ 0), Eq. (4) reduces to the familiar
grating equation presented in Eq. (3).

For a transmission grating, with our sign convention, the
diffraction angle for the zero order is equal to the incident
angle (θ0 ¼ θi). Thus the coordinates of the location in the
direction cosine diagram representing the zero order and
the incident beam are superposed as illustrated as shown in
Fig. 8.

As with the case of the reflection grating, the diffracted
orders remain equally spaced and in a straight line as the
incident angle is changed, i.e., the size, shape, separation, and
orientation of diffracted orders again remains unchanged,
merely shifting its position such that the zero order remains
superposed upon the incident beam.

Figure 9 illustrates the propagating diffracted orders that
would exist if a beam were normally incident upon a trans-
mission diffraction grating with λ∕d ¼ 0.08333. There would
be precisely 25 propagating diffracted orders including the
two at �90 deg. The uniform diffracted order spacing in
direction cosine space Δβ is contrasted with the increasing
angular spacing Δθ , and the even more rapidly increasing
linear spacing Δx, when the diffracted orders are projected
upon a plane observation screen.

For normal incidence, the diffraction grating equation
yields

EQ-TARGET;temp:intralink-;e006;326;631m ¼ d
λ

sin θm; thus
dm
dθm

¼ d
λ

cos θm: (6)

Taking the reciprocal of this derivative and writing it as
a ratio of differences, we have

EQ-TARGET;temp:intralink-;e007;326;566

Δθm
Δm

¼ λ

d cos θm
: (7)

Setting Δm equal to unity, we obtain the following
expression for the angular spacing of “adjacent” diffracted
orders as a function of diffracted angle:

EQ-TARGET;temp:intralink-;e008;326;490Δθm ¼ λ

d cos θm
: (8)

Similarly, from Fig. 9, we can see that

EQ-TARGET;temp:intralink-;e009;326;435xm ¼ L tan θm; (9)

where L is the distance between the grating and the obser-
vation screen.

Taking the derivative of xm with respect to m, we obtain

EQ-TARGET;temp:intralink-;e010;326;371

Δxm
Δm

¼ dxm
dm

¼ dxm
dθm

dθm
dm

¼ λ

d
L

�
1

cos θm
þ sin2 θm

cos3 θm

�
: (10)

Again setting Δm equal to unity yields an expression for
the linear spacing of adjacent diffracted orders projected
upon a plane observation screen as a function of diffracted
angle

EQ-TARGET;temp:intralink-;e011;326;282Δxm ¼ λ

d
L

�
1

cos θm
þ sin2 θm

cos3 θm

�
: (11)

Plotting the expressions provided by Eqs. (8) and (11)
provides a graphical comparison of the relative spacing
between adjacent diffracted orders Δx, Δθ, and Δβ.

Figure 10 indicates that both Δx and Δθ asymptotically
approaches infinity for diffracted angles of 90 deg, whereas
Δβ remains constant for all diffracted angles. When pro-
jected upon a plane screen, the spacing of adjacent diffracted
orders increases by a factor of two (100% increase) at
a diffraction angle of merely 38 deg. The angular spacing
of adjacent diffracted orders increases by a factor of two
at a diffraction angle of 60 deg. If only a 5% increase in
Δx were allowed, the diffraction angle would have to be
held below 10 deg. For Δθ, a 5% increase is observed at
a diffraction angle of 18 deg.

Fig. 8 Relative position of diffracted orders and incident beam in
direction cosine space for a transmission grating. The zero order and
incident beam are superposed.

Fig. 9 Graphical illustration of the relationship between Δθ, Δx ,
and Δβ.
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4 General Grating Equation and the Direction
Cosine Diagram

For obliquely incident beams and arbitrarily oriented gra-
tings, a complicated three-dimensional diagram is required
to depict the diffraction behavior in real space.25 However,
the direction cosine diagram provides a simple and intuitive
means of determining the diffraction grating behavior even
for these general cases. The general grating equation for

a reflection grating with arbitrarily oriented lines (grooves)
is given by24

EQ-TARGET;temp:intralink-;e012;326;467αm þ αi ¼
�
mλ

d

�
sin ψ βm þ βi ¼

�
mλ

d

�
cos ψ ; (12)

where ψ is the angle between the direction of the grating
grooves and the α axis. Note that Eq. (12) still reduces to

Fig. 10 Graphical illustration of the relative spacing between adjacent diffracted orders Δx , Δθ, and Δβ .

Fig. 11 Direction cosine diagrams for four orientations of a grating with period d ¼ 3λ illuminated with an
obliquely incident beam (αi ¼ −0.3 and βi ¼ −0.4): (a) ψ ¼ 90 deg, (b) ψ ¼ 60 deg, ψ ¼ 30 deg,
ψ ¼ 0 deg.
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Eq. (3) when ψ ¼ 90 deg. Figure 11 illustrates the direction
cosine diagram for a beam obliquely incident (αi ¼ −0.3 and
βi ¼ −0.4) upon the same reflection grating discussed above
(d ¼ 3λ) for different orientations of the grating.

Note that in all cases, the zero order is diametrically oppo-
site to the origin from the incident beam and the diffracted
orders remain equally spaced in a straight line. However, this
line is rotated about the zero order such that it is always
perpendicular to the grating grooves. This simple behavior
of conical diffraction from linear gratings when expressed
in direction cosine space provides understanding and insight
not provided by most textbook treatments. It is interesting to
note that Rowland expressed the grating equation in terms of
direction cosines in a paper published over 125 years ago.26

We have demonstrated that when the grating equation is
expressed in terms of the direction cosines of the propagation
vectors of the incident beam and the diffracted orders, even
wide-angle diffraction phenomena (including conical dif-
fraction from arbitrarily oriented gratings) is shift invariant
with respect to variations in the incident angle. New insight
and an intuitive understanding of diffraction behavior for
arbitrary grating orientation were then shown to result from
the use of a simple direction cosine diagram.

5 Paraxial Grating Behavior (Coarse Gratings)
In this section, we discuss the paraxial predictions of diffrac-
tion efficiency for five basic types of diffraction gratings:
sinusoidal amplitude gratings, square-wave amplitude gra-
tings, sinusoidal phase gratings, square-wave phase gratings,
and the classical blazed grating (sawtooth groove profile).
The paraxial diffraction efficiencies of various diffracted
orders will then be tabulated and compared for these five
elementary grating types. For all cases, transverse electric
(TE) polarization for the incident beam has been assumed.

If the grating is placed immediately behind an aberration-
free positive lens of focal length f that is uniformly illumi-
nated by a normally incident plane wave as illustrated in
Fig. 12, the Fraunhofer diffraction pattern produced in the
back focal plane of the lens is given by27,28

EQ-TARGET;temp:intralink-;e013;63;322E2ðx2; y2Þ ¼
E0

λ2f2

����FftAðx1; y1Þgjξ¼x2∕λf
η¼y2∕λf

����2; (13)

where E0 is the irradiance of the incident beam and Ffg
denotes the Fourier transform operation:
EQ-TARGET;temp:intralink-;e014;63;256

Fftðx1; y1Þg

¼
Z

∞

−∞

Z
∞

−∞
tAðx1; y1Þ exp½−i2πðx1ξþ y1ηÞ�dx1 dy1: (14)

Both Goodman27 and Gaskill28 discussed in some detail
both the Fraunhofer and the Fresnel approximations and
the geometrical criteria for each. Goodman, in particular,
showed that the cosine obliquity factor in the more general
Huygens–Fresnel principle must be approximately unity for
both the Fraunhofer and the Fresnel approximations to be
valid. It is this requirement that limits our diffraction angles
to be paraxial angles.

The classical definition of a paraxial ray is that the ray
must lie close to, and make a small angle with, the optical
axis, i.e., 29,30

EQ-TARGET;temp:intralink-;e015;326;631 sin θ ∼ θ; tan θ ∼ θ; and cos θ ∼ 1: (15)

This paraxial requirement obviously places strong limita-
tions on the applicability of the results of this section
concerning the grating period-to-wavelength ratio d∕λ. The
paraxial expressions in Eq. (15) are accurate to within 5% if
the angle does not exceed about 18 deg. Although scalar
diffraction theory is known to predict diffraction grating
performance for TE-polarized light, not transverse magnetic
(TM) or unpolarized light,22 at these paraxial angles there
will be very little difference between the diffraction effi-
ciency for the two orthogonal polarizations.

5.1 Sinusoidal Amplitude Grating

The complex amplitude transmittance of a thin sinusoidal
amplitude grating can be written as

EQ-TARGET;temp:intralink-;e016;326;441tAðx1; y1Þ ¼
�
1

2
þ a

2
cosð2πx1∕dÞ

�
rect

�
x1
w
;
y1
w

�
: (16)

We have assumed that the grating is bounded by a square
aperture of width w. The parameter a represents the peak-to-
peak variation in amplitude transmittance and d is the spatial
period of the grating. Figure 13(a) shows a two-dimensional
image of the grating, and Fig. 13(b) illustrates a profile of
the amplitude transmittance in the x direction.

If this grating is placed immediately behind an aberration-
free positive lens of focal length f that is uniformly illumi-
nated by a normally incident plane wave as illustrated in
Fig. 12, the Fraunhofer diffraction pattern produced in the
back focal plane of the lens is given by Eq. (13).

Applying the scaling theorem and the convolution theo-
rem of Fourier transform theory,28 we can write the Fourier
transform of Eq. (16) as

EQ-TARGET;temp:intralink-;e017;326;243

FftAðx1; y1Þg ¼
�
1

2
δðξ;ηÞ þ a

4
δ

�
ξþ 1

d
;η

�

þ a
4
δ

�
ξ−

1

d
;η

��
� �w2sincðwξ;wηÞ; (17)

where �� is the symbolic notation for the two-dimensional
convolution operation.28

Due to the replication property of convolution with a delta
function, and since the two-dimensional function is sepa-
rable into the product of two one-dimensional functions:28

Fig. 12 Geometry for producing a Fraunhofer diffraction pattern of
an aperture (or transmission grating) in the back focal plane of a lens.
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EQ-TARGET;temp:intralink-;e018;63;456

FftAðx1; y1Þgjξ¼x2∕λf
η¼y2∕λf

¼ w2 sinc

�
y2

λf∕w

��
1

2
sinc

�
x2

λf∕w

�

þ a
4
sinc

�
x2 þ λf∕d
λf∕w

�

þ a
4
sinc

�
x2 − λf∕d
λf∕w

��
: (18)

If there are many grating periods within the aperture,
then w ≫ d, and there will be negligible overlap between
the three sinc functions; hence, there will be no cross terms
in the squared modulus of this sum. Substituting this into
Eq. (13) thus yields the diffracted irradiance distribution in
the focal plane of the lens:

EQ-TARGET;temp:intralink-;e019;63;296Eðx2; y2Þ ¼
E0w4

λ2f2
sinc2

�
y2

λf∕w

��
1

4
sinc2

�
x2

λf∕w

�
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

m¼0

þ a2

16
sinc2

�
x2 þ λf∕d
λf∕w

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

m¼þ1

þ a2

16
sinc2

�
x2 − λf∕d
λf∕w

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

m¼−1

�
: (19)

We thus have three discrete diffracted waves or “orders,”
each of which is a scaled replica of the Fraunhofer diffraction
pattern of the square aperture bounding the grating. The
central diffraction lobe is called the “zero order,” and the
two side lobes are called the plus and minus “first orders.”
The spatial separation of the first orders from the zero order
is λf∕d, whereas the width of the main lobe of all orders is
2λf∕w as shown in Fig. 14.

The diffraction efficiency is defined as the fraction of
the incident optical power that appears in a given diffracted
order (usually the þ1 order) of the grating. Integrating
the irradiance distribution representing a given diffracted
order and dividing by the incident optical power Po ¼ E0w2

gives the diffracted efficiency for that order. Since, for any
b and xo

EQ-TARGET;temp:intralink-;e020;326;379

Z
∞

−∞

Z
∞

−∞

1

b2
sinc2

�
x − xo
b

;
y
b

�
¼ 1; (20)

it is clear that the efficiencies are just the coefficients of
the three sinc2 terms in the curly brackets of Eq. (18). These
efficiencies are tabulated in Table 1.

Theþ1 diffracted order thus contains at most (if the quan-
tity a is equal to unity) 6.25% of the optical power incident
upon a sinusoidal amplitude grating. This very low diffrac-
tion efficiency is not adequate for many applications. As seen
in Table 1, the sum of the efficiencies of all three orders is
only equal to 1∕4þ a2∕8. The rest of the incident optical
power is lost through absorption by the grating.

We will find later in Sec. 6 that a nonparaxial analysis
indicates somewhat better performance for certain combina-
tions of grating period and incident angle.

Fig. 13 (a) Two-dimensional image of sinusoidal amplitude grating and (b) profile of amplitude trans-
mittance in the x direction.

Fig. 14 Irradiance profile of the Fraunhofer diffraction pattern produced by a thin sinusoidal amplitude
grating.

Table 1 Diffraction efficiencies for Fig. 14.

Order # Efficiency

0 0.25

þ1 a2∕16

−1 a2∕16
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5.2 Square-Wave Amplitude Grating

The complex amplitude transmittance of a thin square-wave
amplitude grating can be written as
EQ-TARGET;temp:intralink-;e021;63;581

tAðx1; y1Þ ¼
�
rect

�
x1
b

�
ð1Þ

� � 1
d
comb

�
x1
d

�
δðy1Þ

�
rect

�
x1
w
;
y1
w

�
; (21)

where d is the period of the grating, and b < d is the width of
the transparent slits in this binary amplitude grating. We have
again assumed that the grating is bounded by a square aper-
ture of width w. When 2b ¼ d, we have a 50% duty cycle
square-wave grating, i.e., the transparent slits are separated
by opaque lines of width equal to the width of the slits. Such
a square-wave amplitude grating is known as a Ronchi
ruling. Figure 15(a) shows a two-dimensional image of this
grating, and Fig. 15(b) illustrates a profile of the amplitude
transmittance in the x direction.

Again, applying the scaling theorem and the convolution
theorem of Fourier transform theory,28 we can write

EQ-TARGET;temp:intralink-;e022;63;377FftAðx1; y1Þg ¼ ½b sincðbξÞδðηÞ�½combðdξÞð1Þ�
� �w2 sincðwξ; wηÞ: (22)

However, since the sinc function is separable and the two-
dimensional convolution of two separable functions can be
written as the product of two one-dimensional convolutions,
the above equation can be written as

EQ-TARGET;temp:intralink-;e023;63;282FftAðx1; y1Þg ¼ w2
b
d
f½sincðbξÞ�½dcombðdξÞ�

� sincðwξÞgsincðwηÞ: (23)

Also the product of a sinc function with a comb function
can be written as an infinite sum of shifted and scaled delta
functions,28 hence,
EQ-TARGET;temp:intralink-;e024;63;190

FftAðx1; y1Þg ¼ w2
b
d

�� X∞
m¼−∞

sinc

�
mb
d

�
δðξ −m∕dÞ

�

� sincðwξÞ
	
sincðwηÞ: (24)

Due to the replication property of convolution with delta
functions, we can now write the quantity in the curly bracket
as an infinite series of shifted and scaled sinc functions,
thus eliminating the convolution operation from the above
equation:

EQ-TARGET;temp:intralink-;e025;326;618

FftAðx1; y1Þg ¼ w2
b
d

� X∞
m¼−∞

sinc

�
mb
d

�

× sinc

�
ξ −m∕d
1∕w

��
sincðwηÞ: (25)

Evaluating this function at spatial frequencies ξ ¼ x2∕λf
and η ¼ y2∕λf, and again writing as a two-dimensional
function, we obtain

EQ-TARGET;temp:intralink-;e026;326;516FftAðx1; y1Þgjξ¼x2∕λf
η¼y2∕λf

¼ w2
b
d

� X∞
m¼−∞

sinc

�
mb
d

�
sinc

�
x2 −mλf∕d

λf∕w
;

y2
λf∕w

��
:

(26)

Since w ≫ d, there is again negligible overlap between
the discrete diffracted orders, and there will be no cross
terms in the squared modulus of this sum. The Fraunhofer
diffraction pattern predicted by Eq. (13) for a square-wave
amplitude grating is thus given by

EQ-TARGET;temp:intralink-;e027;326;376

Eðx2; y2Þ ¼
E0w4

λ2f2
b2

d2

� X∞
m¼−∞

sinc2
�
mb
d

�

× sinc2
�
x2 −mλf∕d

λf∕w
;

y2
λf∕w

��
: (27)

There is thus a myriad of diffracted orders produced by
the square-wave amplitude grating as shown in Fig. 16.
However, they are rapidly attenuated by the sinc2 envelope
function. The irradiance distribution representing the m’th
diffracted order is thus given by

EQ-TARGET;temp:intralink-;e028;326;240

Emðx2; y2Þ ¼ E0w2
b2

d2
sinc2

�
mb
d

��
1

ðλf∕wÞ2

× sinc2
�
x2 −mλf∕d

λf∕w
;

y2
λf∕w

��
: (28)

The optical power contained in the m’th diffraction order
is obtained by integrating the above irradiance distribution
over all space in the x2 − y2 plane; however, due to
Eq. (20), the integral of the quantity in curly brackets is just
unity, and we simply obtain

EQ-TARGET;temp:intralink-;e029;326;107Pmðx2; y2Þ ¼ E0w2
b2

d2
sinc2

�
mb
d

�
: (29)

Fig. 15 (a) Two-dimensional image of square-wave amplitude grating (b) and profile of amplitude trans-
mittance in the x direction.
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The diffraction efficiency of the m’th diffracted order is
just the above optical power divided by the optical power in
the incident beam, Po ¼ E0w2, or

EQ-TARGET;temp:intralink-;e030;63;307efficiency ≡
Pmðx2; y2Þ

Po
¼ b2

d2
sinc2

�
mb
d

�
: (30)

One can readily calculate that a square-wave amplitude
grating with transparent and opaque strips of equal width
(b ¼ d∕2) results in only 10% of the incident optical power
being diffracted into the þ1 order. This is a little better than
we achieved with the sinusoidal amplitude grating, but still
not adequate for many applications. Figure 17 illustrates the
diffraction efficiency of the first several orders as a function
of the parameter b∕d.

In spite of the fact that increasing the parameter b∕d
reduces the absorption of the grating, we see that for
b∕d > 0.5, all of the additional transmitted power, plus
some, goes into the zero order, with the efficiency of the
þ1 order actually diminishing with increasing b∕d.

Table 2 lists the efficiency for the first several orders for
b∕d ¼ 0.5. Note that the efficiency of all even orders is
identically zero because the zeros of the envelope function
in Eq. (28) fall exactly upon the even diffracted orders.
We can also see from Fig. 17 that the maximum efficiency

that can be achieved for the second order is 0.025 for
b∕d ¼ 0.25 or 0.75.

5.3 Sinusoidal Phase Grating

One of the disadvantages of amplitude gratings is that much
of the incident optical power is lost through absorption,
whereas phase gratings can be made with virtually no
absorption losses. Transmission phase gratings can consist
of periodic index of refraction variations, or of a periodic
surface relief structure, in a thin transparent optical material.
Reflection phase gratings are merely a surface relief grating
covered with some highly reflective material.

Following Goodman,27 a thin sinusoidal phase grating
can be defined by the amplitude transmittance function:

EQ-TARGET;temp:intralink-;e031;326;275tAðx1; y1Þ ¼ exp

�
i
a
2

sinð2πx1∕dÞ
�
rect

�
x1
w
;
y1
w

�
; (31)

where we have ignored a factor representing the average
phase delay through the grating. The parameter a represents
the peak-to-peak excursion of the sinusoidal phase variation.
The grating, bounded by a square aperture of width w, is
again placed immediately behind an aberration-free lens
that is illuminated with a normally incident plane wave of
uniform irradiance E0 as shown in Fig. 13.

Making use of the Bessel function identity27

EQ-TARGET;temp:intralink-;e032;326;142 exp

�
i
a
2

sinð2πx1∕dÞ
�
¼

X∞
m¼−∞

Jm

�
a
2

�
expði2πmx1∕dÞ;

(32)

where Jm is a Bessel function of the first kind, order m, and
the fact that the exponential Fourier transforms into a shifted

Fig. 16 Irradiance profile of the Fraunhofer diffraction pattern produced by a square-wave amplitude
grating.

Fig. 17 Diffraction efficiency of the first several orders produced by
a square-wave amplitude grating as a function of the width of the
transparent slits relative to the grating period.

Table 2 Diffraction efficiencies for b∕d ¼ 0.5.

Order # Efficiency

0 0.250

�1 0.101

�2 0.000

�3 0.011

�4 0.000
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delta function,28 it is readily shown that, within the paraxial
limitation, the irradiance distribution in the back focal plane
of the lens is given by
EQ-TARGET;temp:intralink-;e033;63;719

Eðx2; y2Þ ¼ E0w2

� X∞
m¼−∞

J2m

�
a
2

��
1

ðλf∕wÞ2

× sinc2
�
x2 −mλf∕d

λf∕w
;

y2
λf∕w

��	
; (33)

and the diffraction efficiency of the m’th diffracted order of
a perfectly conducting sinusoidal phase grating is given by
the following well-known expression:1,22,27,31,32

EQ-TARGET;temp:intralink-;e034;63;612efficiency ≡
Pmðx2; y2Þ

Po
¼ J2m

�
a
2

�
; (34)

where a ¼ 4πh∕λ and h is the peak to peak groove depth of
the sinusoidal reflection grating.

The conservation of energy is easily shown for this
perfectly conducting paraxial (d ≫ λ) reflection grating at
normal incidence because the sum over m from −∞ to ∞ of
the squared Bessel function in Eq. (33) is equal to unity.

Since the Fraunhofer diffraction integral implicitly con-
tains the paraxial approximation, the diffraction angle is
proportional to displacement on the focal plane containing
the Fraunhofer diffraction patterns

EQ-TARGET;temp:intralink-;e035;63;457θx ¼ tan−1ðx2∕fÞ ≈ x2∕f; θy ¼ tan−1ðy2∕fÞ ≈ y2∕f:
(35)

Recalling our definitions of radiometric quantities, it is
clear that the diffracted intensity distribution (radiant power
per unit solid angle) emanating from the grating is thus
proportional to the diffracted irradiance distribution (radiant
power per unit area) incident upon the focal plane as given by
Eq. (33):
EQ-TARGET;temp:intralink-;e036;63;345

Iðθx; θyÞ ¼ I0
X∞

m¼−∞
J2m

�
a
2

��
1

ðλf∕wÞ2

× sinc2
�
x2 −mλf∕d

λf∕w
;

y2
λf∕w

��
: (36)

Figure 18 illustrates the diffracted intensity distribution
as a function of diffraction angle θx and groove depth h,
for a sinusoidal “reflection” grating with period d ¼ 20λ
operating at normal incidence.

The maximum value of J21ða∕2Þ is 0.3386 and occurs for
a ¼ 3.68, corresponding to a groove depth of h ¼ 0.293λ .
The diffraction efficiency of the first few orders for this value
of a is tabulated in Table 3. Note that the energy falls off
rapidly, with 99.88% of the diffracted radiant power con-
tained in diffracted orders jmj ≤ 3. This paraxial model is
accurate only for very coarse gratings (d ≫ λ).

The paraxial behavior described by Eq. (36) above leads
to the common misconception that it is impossible to get
more than 33.86% of the incident energy into the first dif-
fracted order with a sinusoidal phase grating. “Nothing could
be further from the truth!” In fact, if you decrease the grating
period, the diffracted angles increase and the higher orders
eventually go evanescent. When only the zero and �1 dif-
fracted orders remain, changing the incident angle will cause

the −1 order to go evanescent. Then one can vary the groove
depth to squelch the energy in the zero order. For a perfectly
conducting sinusoidal reflectance grating, we can thus get
100% of the incident energy in the þ1 diffracted order!33

In addition to being a paraxial (d ≫ λ) grating, if the
sinusoidal reflection grating is also shallow (i.e., the groove
depth is much less than a wavelength of the incident light),
then the diffraction efficiency of the first orders of the sinus-
oidal reflection grating can be approximated by

EQ-TARGET;temp:intralink-;e037;326;291efficiency ≡ J21ða∕2Þ ≈ a2∕16: (37)

Figure 19 compares the predicted diffraction efficiency of
this approximation with the results of Eq. (34) for a perfectly

Fig. 18 Diffracted intensity distribution as predicted by the above
paraxial model for a sinusoidal reflection grating of period d ¼ 20λ
operating at normal incidence.

Table 3 Diffraction efficiencies for a ¼ 3.68, corresponding to
h ¼ 0.293λ.

Order # Efficiency

0 1.003 × 10−1

�1 3.386 × 10−1

�2 9.970 × 10−2

�3 1.093 × 10−2

�4 6.320 × 10−4

Fig. 19 Comparison of diffracted efficiency of a sinusoidal phase
grating as predicted by Eq. (34) and the common approximation for
shallow (smooth) gratings expressed in Eq. (37).
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conducting surface (R ¼ 1) and illustrates how shallow the
grating must be to satisfy various error tolerances. Note that
the above approximation exhibits only a 1% error in the pre-
diction of diffraction efficiency of the þ1 diffracted order at
h ¼ 0.0318λ, a 5% error at h ¼ 0.0702λ, and a 10% error
at h ¼ 0.098λ.

5.4 Square-Wave Phase Grating

Let us first look at a special case of a rectangular phase
grating where the peak-to-peak phase step is equal to π (this
should result in zero efficiency for the zero diffracted order)
and a duty cycle of b∕d ¼ 0.5 as illustrated in Fig. 20. From
Euler’s equation

EQ-TARGET;temp:intralink-;e038;63;604 expðiϕÞ ¼ cosðϕÞ þ i sinðϕÞ; (38)

we readily see that expðiϕÞ is equal to −1 when ϕ ¼ π and
þ1 when ϕ ¼ 0 as illustrated in Fig. 21. The complex ampli-
tude transmittance of this rectangular phase grating bounded
by a square aperture of width w thus can be written as
EQ-TARGET;temp:intralink-;e039;63;529

tAðx1; y1Þ ¼
��

2 rect

�
x1
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�
ð1Þ � � 1

d
comb

�
x1
d

�
δðy1Þ�− 1

	

× rect

�
x1
w
;
y1
w

�
: (39)

Following the discussion of the square-wave amplitude
grating, we obtain a Fraunhofer diffraction pattern given by
EQ-TARGET;temp:intralink-;e040;63;434

Eðx2; y2Þ ¼
E0w4

λ2f2

� X∞
m¼−∞

sinc2
�
m
2

�

× sinc2
�
x2 −mλf∕d

λf∕w
;

y2
λf∕w

��
; (40)

except that the zero diffracted order is absent. Continuing,
we obtain

EQ-TARGET;temp:intralink-;e041;63;335efficiency ≡
Pmðx2; y2Þ

Po
¼ sinc2

�
m
2

�
for m ≠ 0: (41)

Table 4 thus lists the efficiency for the first several orders
for this special case of a rectangular phase grating. Note
that the π phase step has eliminated the zero order, and the
efficiency of all other even orders is identically zero because
the zeros in the envelope function in Eq. (40) fall exactly
upon the even diffracted orders. This thus maximizes the
efficiency of the remaining orders.

We have thus seen that the maximum efficiency of the
þ1 diffracted order (in the paraxial limit) increases from
0.0625 for a sinusoidal amplitude grating, to 0.1013 for
a rectangular amplitude grating, to 0.3386 for a sinusoidal
phase grating, and to 0.4053 for a rectangular phase grating.

Before we proceed to discuss the classical blazed grating,
we want to derive the general solution for the diffraction
behavior of an “arbitrary rectangular phase grating.” This
derivation will lay the groundwork for studying the behavior
of diffraction gratings with “arbitrary groove shapes.”

For a rectangular phase grating with an arbitrary phase
step, the complex amplitude transmittance can be written as

EQ-TARGET;temp:intralink-;e042;326;370tAðx1; y1Þ ¼ exp½iϕðx1Þ�; (42)

where the phase variation is given by

EQ-TARGET;temp:intralink-;e043;326;332φðx1Þ ¼ a rect

x1
b

�
ð1Þ � � 1

d
comb


x1
d

�
δðy1Þ: (43)

This phase variation is illustrated graphically in Fig. 22.
Since this is an even function, it can be decomposed into a

discrete cosine Fourier series. The Fourier series coefficients
for the above periodic function can be shown to be given by

EQ-TARGET;temp:intralink-;e044;326;251cn ¼ 2a
b
d
sinc


nb
d

�
; (44)

thus

EQ-TARGET;temp:intralink-;e045;326;200ϕðx1Þ ¼
a
2
þ
X∞
n¼1

cn cosð2πnx1∕dÞ: (45)
Fig. 20 Phase variation for a special case of a rectangular phase gra-
ting with a peak-to-peak phase step of π and a 50% duty cycle.

Fig. 21 Complex amplitude for a rectangular phase grating with
a peak-to-peak phase step of π and a 50% duty cycle.

Table 4 Diffraction efficiencies for a square-wave phase grating with
a π phase step.

Order # Efficiency

0 0.000

�1 4.053 × 10−1

�2 0.000

�3 4.503 × 10−2

�4 0.000

�5 1.621 × 10−2

Fig. 22 Phase variation for a rectangular phase grating.
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However, we can ignore the constant term resulting from
the fact that ϕðx1Þ as illustrated above does not have a zero
mean. The rectangular phase variation is thus represented as
a superposition of cosinusoidal phase variations:

EQ-TARGET;temp:intralink-;e046;63;708ϕðx1Þ ¼
X∞
n¼1

cn cosð2πnx1∕dÞ: (46)

A thin rectangular phase grating can thus be defined by
the amplitude transmittance function:

EQ-TARGET;temp:intralink-;e047;63;638tAðx1; y1Þ ¼ exp

�
i
X∞
n¼1

cn cosð2πnx1∕dÞ
�
: (47)

But this can be written as the infinite product:

EQ-TARGET;temp:intralink-;e048;63;579tAðx1; y1Þ ¼
Y∞
n¼1

fexp½icn cosð2πnx1∕dÞ�g: (48)

Making use of the Bessel function identity34

EQ-TARGET;temp:intralink-;e049;63;520 exp½iz cosðθÞ� ¼
X∞

m¼−∞
imJmðzÞ expðimθÞ; (49)

we have an infinite product of infinite sums, which upon
Fourier transforming results in an infinite array of convolu-
tions of infinite sums of delta functions:

EQ-TARGET;temp:intralink-;e050;63;439
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� · · · �
� X∞
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�
n¼∞

	
:

(50)

Although the above expression might at first appear to be
rather unwieldy, it is rather easily solved numerically with
the array operations provided with the MATLAB software
package. In fact, the above operation results in an array of
delta functions that represents the diffracted orders produced
by the rectangular phase grating. The squared moduli of
the coefficients of those terms are the efficiencies of the dif-
fracted orders.

We can now readily calculate the diffraction efficiencies
for a paraxial rectangular phase grating with an arbitrary
phase step and duty cycle. Figure 23 graphically illustrates
the efficiency of the first few diffracted orders produced by a
rectangular phase grating with a phase step of π as a function
of the duty cycle (b∕d). Note that when b∕d equals either
zero or unity, that no phase variations exist, and all of the
diffracted energy remains in the undiffracted beam (zero
order). Also note that for b∕d ¼ 0.5, we obtain the same
results as those tabulated in Table 4.

Similarly, Fig. 24 graphically illustrates the efficiency of
the first few diffracted orders produced by a rectangular
phase grating with a duty cycle of 0.5 as a function of
the phase step a. Note that the even orders are absent.
Equation (50) and Figs. 23 and 24 combined constitute
a rather unique and comprehensive graphical display of
the parametric paraxial performance of square-wave phase
gratings.

The above technique can also be used to calculate the
paraxial diffraction efficiencies of a reflection grating with
arbitrary groove shape by merely supplying the appropriate
Fourier coefficients in Eq. (44).

5.5 Classical Blazed Grating

The concept of a blazed grating is that each groove should
be so formed that independently, by means of geometrical
optics, it redirects the incident light in the direction of
a chosen diffracted order, thus making it appear to “blaze”
when viewed from that direction. Lord Rayleigh was first
to describe the ideal groove shape in 1874.35 He wrote:

Fig. 23 Efficiency of the first few diffracted orders produced by
a rectangular phase grating with a phase step of π as a function of
the duty cycle (b∕d ).

Fig. 24 Efficiency of the first few diffracted orders produced by a rec-
tangular phase grating with a duty cycle of 0.5 as a function of the
phase step a.
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“. . . the retardation should gradually alter by a wavelength in
passing over each element of the grating and then fall back
to its previous value, thus springing suddenly over a wave-
length.” He was not very optimistic about achieving such
geometry, but 36 years later, in 1910, Wood36 produced
the first grating that we would call “blazed” for use in the
infrared. He did this with a tool of carborundum, ruled into
copper.

A missing insight that we now take for granted was pro-
vided by John Anderson in 1916 while working at the Mt.
Wilson Observatory. He demonstrated that superior gratings
could be produced by “burnishing” (plastic deformation
of the surface) rather than cutting the grooves into the
substrate.37 The material thus had to be soft enough to accept
local deformation and at the same time be highly polished.

The classical blazed grating is thus a reflection grating
with a sawtooth groove profile as shown in Fig. 25. Such
gratings have been manufactured for over 150 years by scrib-
ing, or burnishing, a series of grooves upon a good optical
surface. Originally, this surface was one of highly polished
speculum metal.

A major advance in the development of diffraction gra-
tings was the discovery by John Strong in 1936 that vacuum
deposited aluminum on glass is a far superior medium into
which to rule grating grooves than speculum metal, which
had been almost universally used for nearly a century.38

Therefore, in recent times, diffraction gratings have been
ruled in thin layers of aluminum or gold deposited upon
a glass substrate.

Blazed gratings can be designed for a particular wave-
length, incident angle, and diffracted order. The blaze angle
θB of the grating is given by

EQ-TARGET;temp:intralink-;e051;63;400θB ¼ tan−1ðh∕dÞ; (51)

where h is the groove depth and d is the grating period.
For a paraxial grating designed to operate at normal inci-

dence, the groove depth must be equal to

EQ-TARGET;temp:intralink-;e052;63;336h ¼ nBλB∕2; (52)

where nB is the blaze (or design) order and λB is the blaze
(or design) wavelength.

The specularly reflected plane wavefront segments will
then be out of phase by precisely 2π, thus producing
constructive interference for that wavelength and diffracted
order. Stated another way, the reflected phase variation over
one period of the above grating can be written as

EQ-TARGET;temp:intralink-;e053;63;228ϕðx1Þ ¼
2π

λ
OPDðx1Þ ¼

2π

λ
2h

x1
d

¼ 2πnBλBx1∕ðλdÞ: (53)

Making use of the replication properties of convolution
with a comb function, the complex amplitude transmittance
(or reflectance in this case) of a grating blazed for the n’th
order and operating at the blaze wavelength can thus be
written as

EQ-TARGET;temp:intralink-;e054;326;697tAðx1Þ ¼ rect

�
x1
d

�
expð−i2πnBλBx1∕λdÞ �

1

d
comb

�
x1
d

�
:

(54)

Using the scaling theorem and the convolution theorem of
Fourier transform theory, we can write

EQ-TARGET;temp:intralink-;e055;326;617FftAðx1Þg ¼ sinc½dðξ − nBλB∕λdÞ�½d combðdξÞ�: (55)

The irradiance of the Fraunhofer diffraction pattern in the
x2 − y2 observation plane a distance z from the grating is
proportional to the squared modulus of the Fourier transform
of the complex amplitude distribution emerging from the
grating:

EQ-TARGET;temp:intralink-;e056;326;531E2ðx2Þ ∝
1

λz
jFftAðx1Þgjξ¼x2∕λzj2; (56)

EQ-TARGET;temp:intralink-;e057;326;479E2ðx2Þ ∝ sinc2
�
x2 − ðnBλB∕λÞλz∕d

λz∕d

�
1

λz∕d
comb

�
x2

λz∕d

�
:

(57)

When operating at the blaze wavelength λ ¼ λB, the peak
of the sinc2 function is centered on the nB’th diffracted order
and all of the other delta functions (diffracted orders) fall on
the zeros of the sinc2 function. All of the reflected energy is
thus diffracted into the nB’th diffracted order. Figure 26
shows a plot of diffraction efficiency versus x2 × λz∕d for
a coarse grating blazed to operate in the second order at
normal incidence for a wavelength of 550 nm. If d ≫ nBλB,
we can be assured, from the planar grating equation, Eq. (3),
that the nB’th order will be diffracted at a paraxial angle and
this predicted behavior will be accurate.

If the incident angle is nonzero, there would be an addi-
tional linear phase variation over the entire grating (not each
facet individually). Equation (54) describing the complex
amplitude distribution emerging from the reflecting blazed
grating would thus have to be modified as follows:

Fig. 25 Classical reflection blazed grating with normally incident light.

Fig. 26 Illustration of the 100% efficiency achieved by a perfectly
reflecting blazed grating designed to operate at normal incidence
in the second diffracted order.
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EQ-TARGET;temp:intralink-;e058;63;752tAðx1Þ ¼
�
rect

�
x1
d

�
expð−i2πnBλBx1∕λdÞ

� 1

d
comb

�
x1
d

��
exp

�
−i2π

θ0
λ
x1

�
; (58)

where the diffraction angle of the zero order (angle of
reflection) is merely the negative of the incident angle, i.e.,
θ0 ¼ −θi. Again, using the scaling theorem and the convo-
lution theorem of Fourier transform theory, we obtain

EQ-TARGET;temp:intralink-;e059;63;643FftAðx1Þg ¼ fsinc½dðξ − nBλB∕λdÞ�½dcombðdξÞ�g
� δðξ − θ0∕λÞ: (59)

Evaluating at ξ ¼ x2∕λz and substituting into Eq. (56)
yields the following expression for the diffraction pattern
projected onto a screen at a distance z from the grating:

EQ-TARGET;temp:intralink-;e060;63;555

E2ðx2Þ∝ sinc2

2
4x2−



nBλB
λ þ θ0d

λ

�
λz
d

λz
d

3
5 1

λz
d

comb

2
4x2 −



θ0d
λ

�
λz
d

λz
d

3
5:

(60)

Introducing an arbitrary incident angle will thus shift both
the sinc2 envelope function and the diffracted orders by pre-
cisely the same amount. Therefore, under “paraxial” condi-
tions, the diffraction efficiency does not change with incident
angle. For example, if we illuminate the above grating blazed
for the second order with an incident angle equal to the blaze
angle ðθi ¼ θBÞ, the incident beam will strike the individual
facets at normal incidence and the second order will be ret-
roreflected as illustrated in Fig. 27. This situation ðθi ¼ θ2Þ
is referred to as the Littrow condition for the second order,19

and the efficiency will remain at 100% as shown in Fig. 28.
The zero order will of course be specularly reflected from
the plane of the grating, and the þ1 order will be diffracted
normal to the plane of the grating.

The product of a sinc2 function with a comb function can
be written as an infinite sum of shifted and scaled delta func-
tions,28 each of which represents a different diffracted order.
Equation (60) can, therefore, be rewritten as
EQ-TARGET;temp:intralink-;e061;63;279

E2ðx2Þ ∝
X∞

m¼−∞
sinc2

�
m − ðnBλB∕λþ θ0d∕λÞλz∕d

λz∕d

�

× δðx2 − ðθ0d∕λÞλz∕dÞ: (61)

For polychromatic light, we can represent the resulting
diffracted orders with a summation over the discrete
diffracted orders of an integral over some spectral band
Δλ ¼ λ2 − λ1:

EQ-TARGET;temp:intralink-;e062;326;515

E2ðx2Þ ∝
X∞

m¼−∞

Z
λ2

λ1

sinc2
�
m − ðnBλB∕λþ θ0d∕λÞλz∕d

λz∕d

�

× δ½x2 − ðθ0d∕λÞλz∕d�: (62)

Figure 29 schematically illustrates the dispersive behavior
over the visible spectrum of a grating blazed for the first
order at a wavelength 500 nm. The seven classical discrete
colors: red (λ1 ¼ 650 nm), orange (λ2 ¼ 600 nm), yellow
(λ3 ¼ 550 nm), green (λ4 ¼ 500 nm), blue (λ5 ¼ 450 nm),
indigo (λ6 ¼ 400 nm), and violet (λ7 ¼ 350 nm) are
obtained by replacing the integral in the above equation
by a discrete summation:

EQ-TARGET;temp:intralink-;e063;326;362

E2ðx2Þ ∝
X∞

m¼−∞

Xλ7
λ¼λ1

sinc2
�
m − ðnBλB∕λþ θ0d∕λÞλz∕d

λz∕d

�

× δ½x2 − ðθ0d∕λÞλz∕d�: (63)

Figure 30 illustrates that the dispersion is indeed doubled
if the grating is blazed for the second diffracted order. Note

Fig. 27 Blazed grating satisfying the Littrow condition for the second
order.

Fig. 28 Illustration of the 100% efficiency achieved by a perfectly
reflecting blazed grating satisfying the Littrow condition for the second
diffracted order.

Fig. 29 Illustration of the dispersion produced over the visible spec-
trum by a grating blazed for a wavelength of 500 nm in the first
diffractive order.
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also that the diffraction efficiency is substantially reduced for
all wavelengths other than the blaze wavelength.

In this section, we have systematically described in detail
the paraxial behavior of five different classical grating types:
the sinusoidal amplitude grating, the square-wave amplitude
grating, the sinusoidal phase grating, the square-wave phase
grating, and the blazed reflection grating (sawtooth profile).
The result of the paraxial diffraction efficiency analyses of
these five grating types is summarized in Table 5.

6 Nonparaxial Scalar Diffraction Theory
As discussed briefly in Sec. 1–Sec. 5, it is well-known that
the paraxial irradiance distribution on a plane in the far
field (Fraunhofer region) of a diffracting aperture is given
by the squared modulus of the Fourier transform of the com-
plex amplitude distribution emerging from the diffracting
aperture.27,28 A slight variation of Eq. (13), without the pres-
ence of the lens, can be written as

EQ-TARGET;temp:intralink-;e064;63;375Eðx2; y2Þ ¼
E0

λ2z2

���FfUþ
o ðx1; y1Þg

��
ξ¼x2

λz;η¼
y2
λz

���2: (64)

Here Uþ
o ðx1; y1Þ ¼ U−

o ðx1; y1Þt1ðx1; y1Þ is the complex
amplitude distribution emerging from the diffracting aperture
of complex amplitude transmittance t1ðx1; y1Þ, andU−

o ðx1; y1Þ
is the complex amplitude incident upon the lens.

The spatial frequencies ξ and η are the reciprocal variables
in Fourier transform space. Also the Fresnel diffraction inte-
gral is given by the Fourier transform of the product of the
aperture function with a quadratic phase factor.27,28 Implicit
in both the Fresnel and the Fraunhofer approximation is a
“paraxial limitation” that restricts their use to small diffrac-
tion angles and small angles of incidence.27,28 This paraxial
limitation severely restricts the conditions under which this
conventional linear systems formulation of scalar diffraction
theory adequately describes real diffraction phenomena.

A linear systems approach to modeling nonparaxial scalar
diffraction phenomena has been developed by normalizing
the spatial variables by the wavelength of light:20–23

EQ-TARGET;temp:intralink-;e065;326;445x̂ ¼ x∕λ; ŷ ¼ y∕λ; ẑ ¼ z∕λ; etc: (65)

The reciprocal variables in Fourier transform space
become the “direction cosines” of the propagation vectors of
the plane wave components in the angular spectrum of plane
waves discussed by Ratcliff,39 Goodman,27 and Gaskill:28

EQ-TARGET;temp:intralink-;e066;326;370α ¼ x̂∕r̂; β ¼ ŷ∕r̂; and γ ¼ ẑ∕r̂: (66)

By incorporating sound radiometric principles into scalar
diffraction theory, it becomes evident that the squared
modulus of the Fourier transform of the complex amplitude
distribution emerging from the diffracting aperture yields
“diffracted radiance (not irradiance or intensity)20–23:”

EQ-TARGET;temp:intralink-;e067;63;272

L 0ðα; β − β0Þ ¼ K λ2

As
jFfU 0

oðx̂; ŷ; 0Þ expði2πβ0ŷÞgj2 for α2 þ β2 ≤ 1

L 0ðα; β − β0Þ ¼ 0 for α2 þ β2 > 1:
(67)

For large incident and/or diffracted angles, the diffracted
radiance distribution function will be truncated by the unit
circle in direction cosine space. Evanescent waves are then
produced and the equation for diffracted radiance must be
renormalized. The renormalization factor in Eq. (67) is given
by20–23

EQ-TARGET;temp:intralink-;e068;63;159K ¼
R
∞
α¼−∞

R
∞
β¼−∞ Lðα; β − β0Þdα dβR

1
α¼−1

R ffiffiffiffiffiffiffiffi
1−α2

p

β¼−
ffiffiffiffiffiffiffiffi
1−α2

p Lðα; β − β0Þdα dβ
(68)

and only differs from unity if the diffracted radiance distri-
bution function extends beyond the unit circle in direction
cosine space (i.e., only if evanescent waves are produced).

In spite of the fact that it is almost universally believed
that—“in no way can scalar theory deal with cut-off
anomalies,”40 the renormalization factor K in Eq. (67) and
defined by Eq. (68) enables this linear systems formulation
of nonparaxial scalar diffraction theory to predict and model
the well-known Wood’s (Rayleigh) anomalies16 that occur in
diffraction efficiency behavior for simple cases of amplitude
transmission gratings discussed in the following two sections
of this paper.

This renormalization process is also consistent with the
law of conservation of energy. However, it is significant that
this linear systems formulation of nonparaxial scalar diffrac-
tion theory has been derived by the application of Parseval’s
theorem and not by merely heuristically imposing the law of
conservation of energy.20–23

Fig. 30 Illustration that the dispersion is proportional to the diffracted
order number.

Table 5 Paraxial efficiencies of various grating types (optimized for
þ1 order).

Grating type
Zero
order

First
order

Second
order

Third
order

Fourth
order

Sinusoidal amplitude 0.250 0.0625 N/A N/A N/A

Square-wave amplitude 0.250 0.101 0.000 0.011 0.000

Sinusoidal phase 0.1003 0.3386 0.0997 0.0109 0.0006

Square-wave phase 0.0000 0.4053 0.0000 0.0450 0.0000

Classical blazed 0.0000 1.0000 0.0000 0.0000 0.0000

Optical Engineering 087105-17 August 2019 • Vol. 58(8)

Harvey and Pfisterer: Understanding diffraction grating behavior: including conical diffraction. . .



6.1 Rayleigh Anomalies from Sinusoidal Amplitude
Transmission Gratings

Since many individual measurements are required to
completely characterize the efficiency behavior of a given
grating, it has become commonplace to make diffraction
efficiency measurements with a given diffracted order in
the Littrow condition.19 For transmission gratings, a given
diffracted order satisfies the Littrow condition if θm ¼ −θi.
For reflection gratings, the Littrow condition is satisfied if
the given diffracted order is antiparallel to the incident beam,
i.e., θm ¼ θi. This allows the experimenter to leave the detec-
tor and the source in a fixed location and merely rotate the
grating between measurements.

As previously shown in Table 1 of Sec. 5.1, for a narrow
beam normally incident upon a paraxial sinusoidal amplitude
grating with modulation of unity, five-eighths of the incident
energy is absorbed and three-eights of it is transmitted.
Twenty-five percent of the total incident energy is contained
in the zero order and six and one-quarter percent is contained
in both the þ1 and the −1 orders.

If the þ1 diffracted order is in the Littrow condition
(θ1 ¼ −θi) as shown in Fig. 31, the grating equation
expressed in Eq. (3) results in the following expression for
the incident angle

EQ-TARGET;temp:intralink-;e069;63;484θi ¼ sin−1ð0.5λ∕dÞ: (69)

Substituting Eq. (69) into Eq. (3) yields

EQ-TARGET;temp:intralink-;e070;63;442 sin θm ¼ −
�
m −

1

2

�
λ

d
: (70)

Hence, the þ1 and −1 diffracted orders produced by a
sinusoidal amplitude grating propagate at angles:

EQ-TARGET;temp:intralink-;e071;63;375θ1 ¼ −sin−1
�
1

2

λ

d

�
and θ−1 ¼ sin−1

�
3

2

λ

d

�
: (71)

Note that the sign of these two angles are consistent with
the sign convention previously illustrated in Fig. 5. Figure 31
illustrates this situation for λ∕d ¼ 0.4.

As the grating is rotated to increase λ∕d, both the angle of
incidence and the diffraction angles increase. If we use
Eq. (71) to calculate at what value of λ∕d the −1 diffracted
order goes evanescent, θ−1 ¼ π∕2, we obtain

EQ-TARGET;temp:intralink-;e072;63;253λ∕d ¼ 2∕3 ¼ 0.667: (72)

Clearly, the total amount of energy transmitted through
this thin grating does not vary as the angle of incidence of

the narrow beam is increased. Thus when the −1 diffracted
order goes evanescent, the energy that was contained in it
(6.25% of the incident energy) is redistributed into the
two remaining propagating orders (the Rayleigh anomaly
phenomenon).

According to Eq. (68), the renormalization constant K is
equal to

EQ-TARGET;temp:intralink-;e073;326;483K ¼ η−1 þ η0 þ η1
η0 þ η1

¼ 0.0625þ 0.25þ 0.0625

0.25þ 0.0625
¼ 1.2;

(73)

where ηm is the diffraction efficiency of the m’th diffracted
order. The diffraction efficiency of a sinusoidal amplitude
diffraction grating is plotted versus λ∕d in Fig. 32.

Note the 20% increase in diffraction efficiency of both
the zero and the þ1 diffracted order at λ∕d > 0.667.41

It is thus possible to get a maximum diffraction efficiency of
0.075 for the þ1 order with a sinusoidal amplitude grating.
In spite of this increase over the paraxial prediction of
Sec. 5.1, this low diffraction efficiency combined with the
fact that precision sinusoidal amplitude gratings are difficult
to fabricate explains why they are rarely used for practical
applications.

6.2 Rayleigh Anomalies from Square-Wave
Amplitude Gratings

The paraxial behavior of the square-wave amplitude grating
was discussed in detail in Sec. 5.2. Equation (28) indicated
that there is a myriad of diffracted orders produced; however,
they are rapidly attenuated by a sinc2 envelope function. For
a 50% duty cycle square-wave amplitude grating (d ¼ 2b),
the zeros of the envelope function fall precisely on the even
diffraction orders as illustrated in Fig. 33. We see from
Eq. (28) and Fig. 33 that the diffraction efficiency of them’th
diffracted order is given by

EQ-TARGET;temp:intralink-;e074;326;157ηm ¼ 1

4
sinc2

�
m
2

�
: (74)

The paraxial diffraction efficiencies of the first 19
diffracted orders of a square-wave amplitude grating with
a 50% duty cycle are listed in Table 6. Note that 25% of
the incident energy is contained in the zero diffracted order,

Fig. 31 Diffraction configuration for a sinusoidal amplitude transmis-
sion grating with theþ1 diffracted order satisfying the Littrow condition
when λ∕d ¼ 0.4.

Fig. 32 Illustration of Rayleigh anomalies from a sinusoidal amplitude
transmission grating with the þ1 diffracted order satisfying the Littrow
condition.
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all even orders are identically zero, and the remaining dif-
fracted orders contain another 25%. The remaining 50% of
the energy in the incident beam is absorbed by the opaque
strips making up the square-wave amplitude grating.

When operating in the Littrow condition, the diffracted
orders are distributed symmetrically about the grating normal
as shown in Fig. 34. For small λ∕d, there are many diffracted
orders, but they all have small diffraction angles. As λ∕d is
increased, both the angle of incidence and the diffraction
angles increase, and the higher diffracted orders start going
evanescent.

Since the diffracted orders are distributed symmetrically
about the grating normal, a positive and a negative order always
go evanescent simultaneously. Figure 34 illustrates the situation
for a transmission grating with λ∕d ¼ 0.25 and the þ1 dif-
fracted order satisfying the Littrow condition (θ1 ¼ −θi).

Using Eq. (69) to calculate at what value of λ∕d the þ2
diffracted order goes evanescent, we obtain

EQ-TARGET;temp:intralink-;e075;63;104 sinð−π∕2Þ ¼ −1 ¼ −
�
2 −

1

2

�
λ

d
or λ∕d ¼ 2∕3: (75)

Similarly, the −1 order goes evanescent when

EQ-TARGET;temp:intralink-;e076;326;294 sinðπ∕2Þ ¼ 1 ¼ −
�
−1 −

1

2

�
λ

d
or λ∕d ¼ 2∕3: (76)

We likewise discover that the −2 and þ3 diffracted
orders go evanescent when λ∕d ¼ 2∕5, and the −3 and þ4
diffracted orders go evanescent when λ∕d ¼ 2∕7, etc.

Hence, when plotting diffraction efficiency versus λ∕d,
there can be at most only two propagating orders (the zero
order and the þ1 that is being maintained in the Littrow con-
dition) for λ∕d > 2∕3. All other orders are evanescent.

As with the sinusoidal amplitude grating, the total amount
of energy transmitted through a square-wave amplitude gra-
ting does not vary as the angle of the incident beam is
increased. Thus as each pair of diffracted orders goes evan-
escent, the energy that was contained by them is redistributed
into the remaining propagating orders (again the Rayleigh
grating anomaly phenomenon) according to the nonparaxial
scalar diffraction theory summarized earlier in this section.
The renormalization constant K is equal to

Fig. 33 Schematic illustration of diffraction orders for a 50% duty cycle square-wave amplitude grating.
Note that all even orders are absent.

Table 6 Diffraction Efficiencies for the 1st 19 diffracted orders of a
square-wave amplitude grating with b∕d ¼ 0.5.

Order # Efficiency

0 0.2500

�1 0.1013

�2 0.0000

�3 0.0113

�4 0.0000

�5 0.0041

�6 0.0000

�7 0.0021

�8 0.0000

�9 0.0013
Fig. 34 Illustration of diffraction orders for a transmission grating with
λ∕d ¼ 0.25 and theþ1 diffracted order satisfying the Littrow condition.
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EQ-TARGET;temp:intralink-;e077;63;564K ¼
P∞

m¼−∞ ηmP
prop:orders

ηm
¼ 0.5P

prop:ordersηm
; (77)

where ηm is the diffraction efficiency of the m’th diffracted
order.

The diffraction efficiency of the zero order and the þ1
order which is maintained in the Littrow condition for a
square-wave amplitude diffraction grating is plotted versus
λ∕d in Fig. 35.

Note in Fig. 35, the incremental increase in diffraction
efficiency of both the zero and the þ1 diffracted order
as successive pairs of diffracted orders go evanescent.41

A major increase is observed at λ∕d > 0.667 when the −1
order goes evanescent, after which the renormalization factor
has a value of

EQ-TARGET;temp:intralink-;e078;63;388K ¼ 0.5

η0 þ η1
¼ 0.5

0.25þ 0.1013
¼ 1.4233: (78)

It is thus possible to get a maximum diffraction efficiency
of 0.1442 for the þ1 order with a square-wave amplitude
grating. This is a 42.3% increase over the paraxial value of
0.1013.

7 Summary and Conclusions
Elementary diffraction grating behavior (including diffrac-
tion efficiency and dispersion) was reviewed and early chal-
lenges in the development of diffraction grating fabrication
technology were discussed. The importance of maintaining
consistency in the sign convention for the planar diffraction
grating equation was emphasized. The advantages of discus-
sing conical diffraction grating behavior in terms of the
direction cosines of the incident and diffracted angles were
demonstrated, particularly for oblique incident angles and
arbitrary grating orientation.

The paraxial grating behavior for coarse gratings (d ≫ λ)
was derived and displayed graphically for five elementary
grating types: the sinusoidal amplitude grating, the square-
wave amplitude grating, the sinusoidal phase grating, the
square-wave phase grating, and the classical blazed grating
(sawtooth groove profile). Paraxial diffraction efficiencies
for various diffracted orders were calculated, tabulated, and
compared for these five elementary grating types.

Since much of the grating community erroneously
believes that scalar diffraction theory is only valid in the par-
axial regime (d ≫ λ), it was emphasized that this limitation
is due to an “unnecessary” paraxial approximation in the tra-
ditional Fourier treatment of scalar diffraction theory, not
a limitation of scalar theory itself. The development of a
linear systems formulation of “nonparaxial scalar diffraction
theory”20–23 was thus briefly reviewed, then used to predict
the nonparaxial behavior of both the sinusoidal and the
square-wave amplitude transmission gratings when the þ1
diffracted order is maintained in the Littrow condition. This
nonparaxial behavior included the well-known Rayleigh
anomaly effects that are usually thought to require rigorous
(vector) electromagnetic theory.

A companion paper, Understanding Diffraction Grating
Behavior, Part II is currently in progress and will discuss in
detail the limits of applicability of nonparaxial scalar diffrac-
tion theory to sinusoidal reflection (holographic) gratings as
a function of the grating period to wavelength ratio.
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