
Hardware implementations of
computer-generated holography: a
review

Youchao Wang
Daoming Dong
Peter J. Christopher
Andrew Kadis
Ralf Mouthaan
Fan Yang
Timothy D. Wilkinson

Youchao Wang, Daoming Dong, Peter J. Christopher, Andrew Kadis, Ralf Mouthaan, Fan Yang,
Timothy D. Wilkinson, “Hardware implementations of computer-generated holography: a review,”
Opt. Eng. 59(10), 102413 (2020), doi: 10.1117/1.OE.59.10.102413



Hardware implementations of computer-generated
holography: a review

Youchao Wang,† Daoming Dong,† Peter J. Christopher, Andrew Kadis,
Ralf Mouthaan, Fan Yang, and Timothy D. Wilkinson*

University of Cambridge, Centre for Molecular Materials, Photonics and Electronics,
Department of Engineering, Cambridge, United Kingdom

Abstract. Computer-generated holography (CGH) is a technique to generate holographic
interference patterns. One of the major issues related to computer hologram generation is the
massive computational power required. Hardware accelerators are used to accelerate this proc-
ess. Previous publications targeting hardware platforms lack performance comparisons between
different architectures and do not provide enough information for the evaluation of the suitability
of recent hardware platforms for CGH algorithms. We aim to address these limitations and
present a comprehensive review of CGH-related hardware implementations. © 2020 Society of
Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.OE.59.10.102413]

Keywords: computer-generated holography; central processing unit; graphics processing unit;
field-programmable gate array; digital signal processor; hardware accelerator; holography;
system-on-chip.

Paper 191579SSV received Nov. 8, 2019; accepted for publication Feb. 4, 2020; published
online Feb. 28, 2020.

1 Introduction

Holography is a technique used to record and reconstruct the entirety of an optical field.1 This
approach was pioneered by Gabor in 1948 as a two-step, lensless imaging process for improving
the quality of electron microscopy.2

In the early days, holograms were primarily single use as the only recording media available
resembled photographic film. It was not until the mid-1960s when computer-generated holog-
raphy (CGH),3 together with the noticeable improvements in technology, revolutionized the field
and drew a significant amount of interest.

The late 1980s saw a further shift in holography from analog to digital with the emergence
of digital imaging sensors as well as increases in computational powers and electronic display
devices, such as digital micromirror devices and liquid crystal spatial light modulators (SLMs).
Holograms could, for the first time, be digitally captured, processed, and displayed. Over time,
holography has become regarded as a serious display technology for far-field and 3D applications.4

CGH is the field of algorithmically generating holographic interference patterns using digital
computers, with target applications including but not limited to display technologies,5 wave-
length-selective switch,6 optical tweezers,7 and telecommunications.8 Generating computer
holograms in real time is one of the key goals of research, with algorithms for CGH tradi-
tionally running on central processing units (CPUs). Despite recent increases in the processing
power of CPUs, it remains insufficient for real-time photographic applications. Accelerated hard-
ware platforms, including graphics processing units (GPUs), field-programmable gate arrays
(FPGAs), digital signal processors (DSPs), coprocessors as well as application-specific inte-
grated circuits (ASICs), are able to bring high fidelity holographic imagery to real-time
applications.

Figure 1 shows a typical system setup for a CGH. The creation of the computer holograms
can be divided into three parts:1

*Address all correspondence to Timothy D. Wilkinson, E-mail: tdw13@cam.ac.uk
†Both authors contributed equally.

REVIEW

Optical Engineering 102413-1 October 2020 • Vol. 59(10)

https://doi.org/10.1117/1.OE.59.10.102413
https://doi.org/10.1117/1.OE.59.10.102413
https://doi.org/10.1117/1.OE.59.10.102413
https://doi.org/10.1117/1.OE.59.10.102413
https://doi.org/10.1117/1.OE.59.10.102413
https://doi.org/10.1117/1.OE.59.10.102413
mailto:tdw13@cam.ac.uk
mailto:tdw13@cam.ac.uk
mailto:tdw13@cam.ac.uk


1. Calculate: to allow the computer to digitally, instead of optically, calculate the interference
fringes for a target object;

2. Encode: to determine the method to represent or encode the computation results;
3. Display: to display the encoded fringes on a suitable medium.

CGH algorithms, regardless of them being point-source-based, polygon-based, layer-based,
etc., would typically require a very high level of computational power. Hence, when designing
any new holographic systems, the selection of a suitable hardware platform is the primary deci-
sion to be made.

To the best of our knowledge, there is no modern review paper that specifically targets the
hardware used for the generation and processing of computer holography. Previously published
survey papers9–14 provide analyses and conceptual reviews of fast hologram generation algo-
rithms. Additionally, Shimobaba et al.15 and Shimobaba and Ito16 provided overviews in terms
of CGH-related hardware implementations. However, all of the above reviews suffer from a lack
of the following:

1. A comparison between different hardware platforms;
2. A dedicated discussion with respect to hardware implementations;

3. An assessment of the trade-offs between different development factors for a given hard-
ware platform;

4. An up-to-date review with respect to the most recent developments in modern hardware.

We aim, therefore, to provide review by comparing different hardware platforms and discus-
sing each platform’s advantages and disadvantages. This review paper considers CPUs, GPUs,
FPGAs, and other hardware accelerators in dedicated sections. For each platform, we provide a
literature survey on the applications utilizing these specific hardware platforms. This is followed
by a discussion of device properties, available development toolchains, the ease of development,
and their advantages and disadvantages. We also present cross-platform comparisons to gain
insights regarding the use of different types of accelerators. Generally, we provide a thorough
examination of the current state-of-the-art hardware implementations along with a review of their
applications over the previous decade (2008 to 2020).

This literature survey is outlined as follows. Section 1 first introduces the field holography
alongside key concepts and a discussion of the CGH challenges. CPU, GPU, FPGA, and other
platform implementations are discussed in Secs. 2, 3, 4, and 5, respectively. Section 6 reports
comparison between different hardware platforms and provides in-depth discussion to guide hard-
ware selections. Finally, the paper is concluded after presenting future work directions in Sec. 7.

1.1 Hologram and the Replay Field

In a classical imaging system, Fig. 2, focusing optics are used to focus light scattered from a
point of an object onto a corresponding point on a sensor (the recording device). In such a

Fig. 1 A typical system for CGH consisting of three main components: a light source, a computer
or hardware platform for interference pattern calculation, and a device to display the hologram.4

Wang et al.: Hardware implementations of computer-generated holography: a review

Optical Engineering 102413-2 October 2020 • Vol. 59(10)



system, any different origin point on the object leads to a corresponding change in the position on
the recording plane of the sensor. The loss of a portion of the sensor data will result in a cor-
responding loss in the image.

In a holographic imaging system, Fig. 3, scattered light is collected without the use of a
focusing optics, instead of interfering the scattered light with a reference beam. Replicating
recording conditions allows for replication of the light field and the resulting image, as depicted
in Fig. 4. The image is stored across all parts of the recording device leading and loss of a portion
of the recording only causes a loss in the quality of the image. The entire image can still be
reproduced.

Fig. 2 A classical optical imaging system.

Fig. 3 A holographic imaging system for hologram recording.

Fig. 4 A holographic projection system for hologram reconstruction.

Wang et al.: Hardware implementations of computer-generated holography: a review

Optical Engineering 102413-3 October 2020 • Vol. 59(10)



Traditional analog holography follows two steps known as recording and reconstruction:1,2,17

1. Recording: - A coherent, collimated light source is split into “object” and “reference”
beams (Figure 3). The object beam is directed onto a physical object and the resulting
scattered light interfered with the reference beam. The interference fringes are recorded
on a photosensitive film to produce the hologram.

2. Reconstruction: - A similar system is used to reproduce the hologram (Figure 4). An iden-
tical light source is directed onto the film leading to a visible output equivalent to viewing
the object directly.

CGH goes further than this by using a known target or scene to generate the reconstruction
image, thus eliminating the requirement of a recording step.

1.2 Limitations of CGH

CGH promises a great deal. However, in practice, a number of key limitations exist:

1.2.1 Hologram representation

Complex modulation schemes are achievable by several means and methods,18,19 despite the fact
that display media, such as SLMs, are still facing technological limitations to perform true arbi-
trary complex modulations. However, these methods often require nontrivial modifications and
device setups, consequently limiting the representations of holograms. Moreover, the hardware
manufacturing constraints limit the size and quality of the reconstructed holographic images as
well as the viewing angle.16

1.2.2 High computational power demand

The hologram and object field is correlated by “Fourier transforms” for any given pixel display.
For a single image frame withN × N points or pixels, the computation complexity can be as high
as OðN4Þ. By utilizing the power of fast Fourier transforms (FFTs), we are able to reduce this
complexity to OðN2 logðNÞÞ. Unfortunately, this is still computationally expensive, before even
considering the inclusion of other operations for any given algorithms to produce high quality
images and videos, where the incorporation of visual effects, such as shading,20 occlusion
effects,21,22 directional scattering,23 is of great essence. Such high quality image demand is one
of the key limitations.

1.2.3 Downgrade of the replay field image quality

The quality of the holographic reconstructed image would be affected by factors, such as speckle
noise,13 ringing artifacts,24 the optomechanical properties of SLMs,25 etc. Moreover, in the real
world, display devices are incapable of modulating light continuously, and being limited to a
number of discrete levels results in quantization artifacts, which have an adverse effect on image
quality.26 During this process, the information stored in the interference pattern will be reduced,
leading to a degradation in image quality.

A suitable hardware platform for CGH algorithm implementations needs to be selected in
order to speed up the generation of computationally heavy holograms while ideally also improv-
ing replay field quality. In this paper, we aim to address this problem by providing a selection
guideline for researchers and developers to choose the most suitable hardware platforms for
computer hologram applications. While we stay focused on the hardware choice, it should
be pointed out that such choices are also intimately related to the algorithm selected as some
would require more dedicated and specialized hardware resources as compared to others. A
further discussion of such is outlined in Sec. 6.

We divide the current state-of-the-art hardware platforms into two categories: conventional
processors, where we refer to CPUs, and hardware accelerators, such as GPUs, FPGAs, DSPs,
and coprocessors. Traditionally, basic arithmetic calculations were done in CPUs. However,

Wang et al.: Hardware implementations of computer-generated holography: a review

Optical Engineering 102413-4 October 2020 • Vol. 59(10)



for certain computationally expensive applications, there is a need for specialized architecture,
where the design is optimized for the application to accelerate performance.

Hardware accelerators were designed to tackle this issue by exploiting properties, such as
parallelism and application-specific dedicated hardware accelerations. These devices are usually
based on different architectures and inherently make use of different development tools and util-
ities. The code and algorithm migrations between these hardware platforms are not often straight-
forward. They require a good understanding of the specific hardware architectures as well as
microarchitectures in order to carry out code implementations and optimizations properly.

2 Central Processing Units

Since their invention in the early 1970s, CPUs have become the core of this ever-developing
digital world. Von-Neumann, Harvard architectures, and their architectural variants will continue
to dominate the market in the foreseeable future. The fundamental operations and underlying
theories remained largely unchanged throughout the years. These CPUs are designed to com-
plete computational tasks that are as general as possible. Unfortunately, it is this very generality
that prevents CPUs from executing high-performance computational operations since they lack a
sufficient amount of parallelism within their architectures.27

It was not until 2005 when Intel introduced the Pentium D series—the first desktop-class
dual-core processor—that exploited parallel processing for individual consumer computers run-
ning multicore processors. A typical contemporary computer with a multicore processor can run
tens and hundreds of tasks at any given time. Running multiple programs simultaneously utilizes
concurrency by switching and jumping between different threads, or instruction streams, under
real time.28 The job-switching operations take up and waste CPU cycles and would hence pre-
vent the platform to run at optimal efficiency when performing multitasking and exploiting par-
allel processing.

For this paper, we will only evaluate Intel and AMD chip families as they are the two vendors
to produce x86/64 architecture, the dominant high-performance CPU architecture at the time of
writing, design.

2.1 Platform for Preliminary Verification of Algorithms

Most hologram generation algorithms were developed on conventional computers, utilizing the
power of the latest CPU chip families. Software-based algorithms run on CPUs to efficiently
minimize the development time and reduce the computational burden by exploiting advanced
computation libraries, software packages, and other utilities.

Reported work based purely on CPUs form the preliminary analysis of various proposed
computer hologram generation algorithms. Researchers tend to focus more on theoretical devel-
opment rather than code optimization since conventional CPUs are not used for acceleration
purposes.

Due to their commonality and the ease-of-use, the majority of work that incorporates CPUs
often uses them as the comparison baseline for algorithm implementations on other hardware
platforms that utilize dedicated accelerators.

2.2 Available Tools and Utilities for CPUs

Since CPUs are the core components within a modern personal computer (PC) and workstation,
the vast majority of software packages and development suites are readily available. Code and
programs can be written in many high-level languages, and low-level application programming
interfaces (APIs) and frameworks, such as OpenMP and OpenCV, are also widely available. As
an API for shared memory multiprocessing, OpenMP is dedicated to high-level parallelism in
Fortran and C/C++ programs.29 Compiler directives, library routines as well as environment
variables can be used to optimize for multiprocessing by, for example, distributing workloads
among the available threads and physical cores.

We endeavor to conclude the tools and utilities that have been reported in previously pub-
lished papers since 2008, as shown in Table 1. The most commonly used software application is

Wang et al.: Hardware implementations of computer-generated holography: a review

Optical Engineering 102413-5 October 2020 • Vol. 59(10)



MATLAB due to its simplicity and numerous package supports. No strict understandings in
terms of hardware architectures and memory management are necessary when developing algo-
rithms over MATLAB, as compared to other realization methods. C/C++ tends to be the most
popular programming language used for algorithm implementations. C/C++ programming libra-
ries and functions, such as FFTW, cvDFT from OpenCV, and custom library CWO++,37 offer
strong support for improved hologram generation performances.

2.3 Advantages and Disadvantages of Using CPUs

The most significant advantage of using CPUs for algorithm implementation is the short devel-
opment time and sophisticated software toolchain support. Nearly, all the software packages that
can be found on other hardware accelerator platforms have the same or equivalent toolkits, which
are available on CPU-based PCs. These ranges from programming languages, such as C/C++
and Python, compile time and run-time libraries to software packages.

Other merits of using CPUs are as follows:

1. Comparatively high clock frequency: Contemporary CPUs run in GHz domain as com-
pared to the frequencies in other hardware that are usually between hundreds of MHz to
above 1 GHz. Higher clock rates provide shorter clock cycles, consequently speeding up
sequential processes.

2. Floating-point precision: CPUs tend to have better support for double-precision floating-
point arithmetic from the tools that are available, although the use of full-precision com-
ponents can downgrade run-time execution speed.

Table 1 Tools and utilities employed for CPU implementations since 2008.

Name Category Appearance Year

MATLAB Software Novel LUT algorithm,30 Run-length encoding
and N-LUT algorithm,31 compressed LUT
algorithm,32 binary detour phase holograms,33

specific solutions for Gerchberg–Saxton (GS)
algorithm,34 highly efficient calculation,35

rotational transformation of wavefields36

2008, 2009, 2013,
2014, 2019

CWO++ library
(CWO:
computational
wave optics)

Customized
C++ library

CWO++ library (CWO for CPU),37 wavelet
shrinkage-based superposition (WASABI)
using CWO++38–40

2012, 2017, 2018

FFTW library FFT library Wavefront recording plane (WRP) GPU
comparison,41 CWO++37

2009, 2012

Intel math kernel
library (MKL)

Math and FFT
library

Polygon-based extremely high-definition
projection42

2009

cvDFT
(OpenCV)

FFT function
from OpenCV

Wavefront recording plane43 2018

OpenMP Multiprocessing
API

Baseline for multi-GPU cluster comparison44 2012

C Programming
language

Simulated annealing (SA) GPU comparison,45

multi-GPU cluster comparison44
2010, 2012

C++ Programming
language

Polygon-based extremely high-definition
projection,42 WRP GPU comparison,41 SA
GPU comparison,45 CWO++ and WASABI,37–40

full color and color space conversion using
WASABI46

2010, 2012, 2017,
2018, 2019

Python Programming
language

Compressive-sensing GS47 2019

Wang et al.: Hardware implementations of computer-generated holography: a review

Optical Engineering 102413-6 October 2020 • Vol. 59(10)



The disadvantages are also apparent. CPUs are optimized for sequential operations and con-
sequently, full parallelism cannot be achieved. Although state-of-the-art CPUs at the time of
writing feature a higher level of parallelism than older CPUs, with tens of cores being available
in a single package, this pales in comparison to the massively parallel architectures of GPUs and
FPGAs, which feature thousands of parallel execution units. Moreover, the software libraries and
APIs to support parallelism, such as OpenMP, which help shorten the developing time needed for
multithread and multiprocessing applications, exist but require an advanced level of skills to
utilize effectively.

2.4 Reported Work Using CPUs

Most of the reported work covering CPU-based applications are for either algorithm develop-
ments or, more commonly, for establishing baselines for cross-platform performance
comparisons.

The most common method to optimize the performance of hologram generation using a
computer is to combine both CPUs and GPUs together.

Shimobaba et al. reported on the development of a C++ library CWO++, which is used
for diffraction calculations.37 This library has been developed to run on both CPU (CWO class)
and GPU (GWO class, GPU-based wave optics), and has been used in various algorithm
developments.24,38–40,44,48–50

We aim not to thoroughly review the work that reports on CPU-based platform performance,
as in the majority of cases the CPU results are used to provide a baseline performance reference.
However, the baselines are subsequently encountered in many throughout the survey.

2.5 Summary of CPUs

Contemporary CPUs offer insufficient performance for “real-time” CGH, and hence it is not
recommended to build a real-time holographic system based solely on them. Moreover, the ready
availability of hardware accelerators, such as GPUs and FPGAs, provides further rationale for
hologram generation algorithms not to be implemented purely on a CPU-only platform.

Algorithm developments in the initial phase, however, are one exception for purely CPU
simulations and implementations, e.g., with MATLAB and Simulink, in order to significantly
cut down the development time and improve the efficiency of research outputs. Moreover, this
approach also encourages collaboration, lowering the skills and knowledge barriers for other
research groups to replicate and improve the corresponding algorithms.

3 Graphics Processing Units

In both academia and industry, GPUs, being the dedicated graphics accelerators, have gained
much attention since their introduction in the late 1990s.51 Through the use of parallel opera-
tions, these accelerators maximize the performance of image- and video-related applications.

Benefiting from economics of scale, GPU products are cost-effective and readily available.
High-end products with a large count of processing units that perform parallel half (16-bit),
single (32-bit) and double (64-bit) precision floating point operations in parallel are eminently
suitable for image and video processing applications. The introduction of compute unified
device architecture (CUDA)52 by NVIDIA in 2007 further extends the ease of development and
shortens the implementation as well as transplantation time. Due to their strong parallel perfor-
mance and well-supported development environment, GPUs are one of the most effective hard-
ware accelerators available on the market.

Traditionally, GPUs have been dedicated to graphics rendering. However, throughout years
of development, which have brought forth increases in computational power, contemporary
GPUs are encroaching upon application domains that formerly belonged to high-end high-power
CPUs. These GPUs are regarded as general-purpose graphics processing units (GPGPUs).
Nonspecialized calculations, such as machine learning computations, scientific computations,
heavy image/video editing, and encryption/decryption, have been taken over by the use of

Wang et al.: Hardware implementations of computer-generated holography: a review

Optical Engineering 102413-7 October 2020 • Vol. 59(10)



GPGPUs based on their merits of having massive parallelism and large processing core counts
as opposed to the traditional CPUs.

Two vendors, NVIDIA and AMD, are major players in the graphics processing industry.
Intel, with the recent development of its own GPU hardware, makes it another major producer
of GPUs. However, based on the past lines of work, we will mainly focus on the NVIDIA GPU
families since they are the most popular hardware platform used in the CGH and image process-
ing community.53

3.1 Parallelism in GPUs

Architecturally, a GPU is significantly different from a CPU. The major difference being that
GPUs exploit massive parallelism at the hardware level. A single mainstream contemporary
GPU incorporates thousands of dedicated processor cores, whereas even the highest-end
CPUs typically contain less than 24 cores.54 It is this inherent parallelism that provides high-
performance computation capability for highly parallel problem spaces.

3.2 GPU Performance Trends

Over the years, NVIDIA brought out a range of core microarchitectures in their GPU series,
targeting both the professional high-performance uses as well as individual consumer level appli-
cations. The last decade has seen a large increase in the performance capability of GPUs, as
summarized in Table 2.56,55 While the rated power consumption has remained relatively constant
(at around 200 to 300 W), we have seen a significant increase in processing power. Ever since
Fermi was regarded as “the first complete GPU computing architecture,”57 10 years has seen
NVIDIA working on incorporating advanced shaders, hardware ray tracing, and many high-
performance functionalities, with larger and faster processing capability and speed for not only
graphics rendering but more general-purpose usages.58 Consider the floating-point operations
per second (FLOPS) performance of a top-end GPU. Between 2008 and 2018, the performance
increased from 432 GFLOPS to 16,312 GFLOPS, an improvement of more than 37×.

GPU designs vary between different microarchitectures and production families. Figure 5
shows a typical structural overview of an NVIDIA GPU with numerous streaming multiproc-
essors consisting of shared memories, L1/L2 caches, CUDA cores, arithmetic units (e.g., double

Table 2 Microarchitectures since 2008 and their representative flagship GPU products (SP:
single-precision floating point).55

Model
Year of
launch Microarchitecture

Transistors
(million)

Fab
(nm) GFLOPS

TDP
(W)

GTX 2008 Tesla 754 65/55 432 140

GTX 295 2009 Tesla 2 × 1400 55 1192.3 289

GTX 480 2010 Fermi 3000 40 1344.96 (SP) 250

GTX 590 2011 Fermi 2 × 3000 40 2488.3 (SP) 365

GTX 690 2012 Kepler 2 × 3540 28 2 × 2810.88 (SP) 300

GTX TITAN 2013 Kepler 7080 28 4499.7 (SP) 230

GTX TITAN Z 2014 Kepler 2 × 7080 28 8121.6 (SP) 375

GTX TITAN X 2015 Maxwell 8000 28 6604.8 (SP) 250

GTX TITAN X 2 2016 Pascal 12,000 16 10974.2 (SP) 250

GTX TITAN V 2017 Volta 21,100 12 14899.2 (SP) 250

GTX TITAN RTX 2018 Turing 18,600 12 16312.32 (SP) 280

Wang et al.: Hardware implementations of computer-generated holography: a review

Optical Engineering 102413-8 October 2020 • Vol. 59(10)



precision unit), load/store units, etc. This architectural setup reveals the high level of inherent
hardware parallelism within modern GPU devices.

3.3 Available Tools and Utilities for GPUs

Two utilities are widely used: CUDA platform and open computing language (OpenCL)
framework.

In 2007, a parallel computing platform and API model, CUDA, was released by NVIDIA.
Prior to the introduction of CUDA, graphics and GPU programming skills for use in tools, such
as Direct3D, DirectX, and OpenGL, with a good understanding of high-level shader language
(HLSL) were required in order to take advantage of the high computational performance of
graphics cards.59 CUDA, however, only required standard C/C++ or Fortran programming lan-
guage skills as the bare minimum.

As of the writing of this review, CUDA has iterated to its tenth generation (10.1) and comes
with both compile-time and run-time libraries.52 In particular, the CUDA FFT library enables
high-performance FFTand inverse FFT computations similar to the FFTW library.60 Other useful
libraries provided include, but are not limited to a basic linear algebra subroutine library,
cuBLAS, useful for linear algebraic operations; a random number generation library, cuRAND,
useful for random phase generations; and a parallel algorithms and data structures library, Thrust,
to accelerate operations, such as sum and average, as well as boundary (maximum and mini-
mum) search algorithms in parallel.

Developing programs over CUDA is straightforward with the support of a modified C pro-
gramming language dedicated to the CUDA framework.

Additionally, vendors, such as NVIDIA and AMD, have provided full support and have
released the implementations of OpenCL for their GPUs. OpenCL is a framework with low-level
APIs for cross-platform computing. Developers can use the provided APIs from OpenCL to
write programs that run across CPUs, GPUs, etc., with C programming language. However, it
is worth noting that a study (not related to holography) conducted by Memeti et al. in 2017
suggested that CUDA outperforms OpenCL in terms of productivity, requiring two times less
programming effort for a specific benchmark suite.61

Fig. 5 A typical parallel pipeline overview of an NVIDIA GPU consisting of streaming multiproc-
essors each containing a number of cores and functional units.

Wang et al.: Hardware implementations of computer-generated holography: a review

Optical Engineering 102413-9 October 2020 • Vol. 59(10)



MATLAB, in the meantime, provides a parallel computing toolbox for GPU computing.
Despite some limitations, it is argued that combining both CUDA kernels and MATLAB support
(using the parallel computing toolbox) can further improve and smooth the programming
process.33,62 No knowledge in CUDA is needed while exploiting the parallel computing capa-
bilities for CGH-related computation speed-ups.

3.4 Advantages and Disadvantages of Using GPUs

GPUs are used for accelerating the processing of images and videos at birth. The hardware archi-
tectures are specially designed for this purpose by highly optimizing the parallel characteristics
in both hardware and software.

The key advantage of GPGPUs is that they can be programmed using high-level program-
ming languages, such as C/C++, making code development and corresponding debug processes
faster and easier than in other platforms, such as FPGAs.

As shown in Table 2, one of the major disadvantages of using GPUs for algorithm imple-
mentation is their high power consumption. The thermal design power, which is the maximum
amount of heat generated by the chip during operation and which serves as a basic indicator of
power consumption, is typically around 200 to 300 W.

A good understanding of GPU microarchitectures and, in particular, memory management is
required for speed optimization, although dedicated utilities tend to offer modest support for
managing the memory.

More importantly, most of the GPUs cannot work as a standalone platform. A system incor-
porating CPUs and other essential hardware devices tends to create limits on data throughput
during read, fetch, and write operations and would increase the overall power consumption.
Additionally, this level of integration introduces a data transfer bottleneck, which downgrades
the overall performance of the platform. The speed for data transfers between the host PC and the
GPU or GPU cluster would even slow down when the implementation has not been properly
optimized.

3.5 Development Time Using GPUs

The use of CUDA makes GPU implementations simpler. The majority of the development time
will be spent on software coding using C/C++ programming language.

The major difficulty in the development of GPU hologram generation application is to
optimize the codes for the potentially high-throughput and heavy computational requirements.
This requires a good understanding of the GPU architectures as well as hardware and software
optimization techniques. However, since most of the fast algorithms implemented, such as in
Refs. 45,63–65, require less sophisticated operations, the optimization can be based purely on
increasing the data throughput and improving the computational power with parallel processing.

3.6 Reported Work Using GPUs

Lucente and Galyean demonstrated the first published result of CGH generation using a com-
puter graphics workstation.66 The achieved performance was calculated using eight 128 ×
60 pixels full-color images, which leads to a replay field of a 3D object with different viewing
angles. At that time, the calculation time of 2 s over the graphics workstation was 100 times
faster than a conventional computer.

Later, in 2003, Petz and Magnor used an NVIDIA Geforce 4600Ti to generate the interfer-
ence fringes for holograms.67 In their work, the authors assessed both the GPU performance
and the computational time dependency based on the resolution of holograms. For an object
that contains 1024 light source points, it takes 0.96 and 3.86 s to calculate the corresponding
holograms of the resolutions of 512 × 512 and 1024 × 1024, respectively.67

Before the introduction of CUDA, the graphical API OpenGL was used to compute holo-
grams, as was reported in 200668 and 2009.21 However, the performance was not promising.
Additionally, a real-time reconstruction system for an 800 × 600 64-point based 3D object

Wang et al.: Hardware implementations of computer-generated holography: a review

Optical Engineering 102413-10 October 2020 • Vol. 59(10)



T
ab

le
3

A
su

m
m
ar
y
of

C
G
H

im
pl
em

en
te
d
on

G
P
U
s
si
nc

e
20

08
.

P
ro
je
ct

an
d
ap

pl
ic
at
io
n
(y
ea

r)
Im

pl
em

en
te
d
al
go

rit
hm

H
ar
dw

ar
e
m
od

el
(G

F
LO

P
S

S
P

ba
se

d
on

R
ef
.
55

)
P
er
fo
rm

an
ce

H
ol
og

ra
ph

ic
op

tic
al

tw
ee

ze
rs

an
d

4π
-m

ic
ro
sc

op
y
(2
00

8)
72

G
er
ch

be
rg
-S
ax

to
n
al
go

rit
hm

G
ef
or
ce

88
00

G
T
X

(3
45

.6
)
an

d
88

00
G
T
S

(4
16

)
O
ne

G
S

lo
op

at
51

2
×
51

2
in

16
.5

m
s

D
at
a-
pa

ra
lle
lc

om
pu

tin
g
fo
r
po

in
t
cl
ou

d
(2
00

9)
73

N
on

un
ifo

rm
sa

m
pl
in
g,

co
m
m
on

vi
si
bi
lit
y

gr
ou

p
(C

V
G
)
ap

pr
ox

im
at
io
n

G
ef
or
ce

98
00

G
X
2
(2

×
38

4)
N
on

un
ifo

rm
75

92
po

in
ts

in
10

.3
s,

C
V
G

in
5.
07

s

D
ep

th
bu

ffe
r
ra
st
er
iz
at
io
n
fo
r
3D

di
sp

la
y

(2
00

9)
21

R
ay

tr
ac

in
g
al
go

rit
hm

w
ith

pr
ec

om
pu

te
d

lo
ok

-u
p
ta
bl
es

G
ef
or
ce

88
00

G
T
(3
36

)
26

6
sa

m
pl
in
g
ra
ys

w
ith

12
qu

ad
s
in

1.
37

s

C
ol
or

re
co

ns
tr
uc

tio
n
sy

st
em

w
ith

G
P
U
(2
00

9)
70

10
00

-p
oi
nt

ba
se

d
G
ef
or
ce

G
T
X
28

0
(6
22

)
14

00
×
10

50
in

31
m
s

F
as

t
C
G
H

us
in
g
S
-L
U
T
(2
00

9)
63

S
pl
it
lo
ok

-u
p
ta
bl
es

G
T
X

28
5
(7
08

.4
8)

70
0×

fa
st
er

th
an

LU
T
on

In
te
lC

or
e
i7

96
5

fo
r
ob

je
ct

po
in
t
la
rg
er

th
an

40
k

R
ay

-t
ra
ci
ng

(a
s
th
e
ba

se
lin
e
re
fe
re
nc

e)
us

in
g

G
W
O

lib
ra
ry

41
R
ay

-t
ra
ci
ng

al
go

rit
hm

G
T
X

26
0
(∼
55

0)
48

,2
77

po
in
ts

3D
ob

je
ct

in
13

80
m
s

R
ea

l-t
im

e
C
G
H

us
in
g
m
ul
tip

le
G
P
U
s
(2
01

0)
74

10
00

-p
oi
nt

ba
se

d
3×

G
T
X

28
5
(7
08

.4
8
pe

r
G
P
U
)

10
00

po
in
ts

pe
r
co

lo
r
at

22
F
P
S

C
G
H

w
ith

A
M
D

(2
01

0)
69

10
24

-p
oi
nt

ba
se

d
A
M
D

R
V
87

0
(u
nk

no
w
n)

co
m
pa

rin
g

N
V
ID
IA

G
T
X

26
0
(∼
55

0)
19

20
×
10

24
in

31
m
s

G
P
U

ac
ce

le
ra
tio

n
us

in
g
S
A

(2
01

0)
45

S
A

N
V
ID
IA

G
T
X

26
0
(∼
55

0)
P
er
fo
rm

an
ce

im
pr
ov

em
en

t
of

m
or
e
an

or
de

r
of

m
ag

ni
tu
de

co
m
pa

re
d
to

us
in
g
C
P
U

on
ly

H
ol
og

ra
ph

ic
op

tic
al

tw
ee

ze
rs

al
go

rit
hm

im
pl
em

en
ta
tio

n
(2
01

0)
75

S
up

er
po

si
tio

n
al
go

rit
hm

,
w
ei
gh

te
d

G
er
ch

be
rg
–
S
ax

on
al
go

rit
hm

G
T
X

26
0
(∼
55

0)
35

0×
(S
R
)
an

d
45

×
(G

S
W
)
fa
st
er

th
an

In
te
l

P
en

tiu
m

D

In
te
rp
ol
at
ed

w
av

ef
ro
nt
-r
ec

or
di
ng

pl
an

e
(2
01

1)
76

In
te
rp
ol
at
ed

w
av

ef
ro
nt
-r
ec

or
di
ng

pl
an

e
(I
W
R
P
)
ap

pr
oa

ch
G
T
X

58
0
(1
58

1.
1)

20
48

×
20

48
in

25
m
s

C
W
O
+
+
lib
ra
ry

pe
rf
or
m
an

ce
be

nc
hm

ar
k

(2
01

2)
37

G
er
ch

be
rg
–
S
ax

to
n
al
go

rit
hm

G
T
X
46

0M
(5
18

.4
),
G
T
X
29

5
(1

ch
ip
,∼

60
0)
,

G
T
X

58
0
(1
58

1.
1)

20
48

×
20

48
T
w
o
m
ag

ni
tu
de

s
fa
st
er

th
an

an
In
te
lC

or
e
i7

74
0Q

M

Wang et al.: Hardware implementations of computer-generated holography: a review

Optical Engineering 102413-11 October 2020 • Vol. 59(10)



T
ab

le
3
(C

on
tin

ue
d)
.

P
ro
je
ct

an
d
ap

pl
ic
at
io
n
(y
ea

r)
Im

pl
em

en
te
d
al
go

rit
hm

H
ar
dw

ar
e
m
od

el
(G

F
LO

P
S

S
P

ba
se

d
on

R
ef
.
55

)
P
er
fo
rm

an
ce

G
P
U

cl
us

te
r
fo
r
di
vi
de

d
C
G
H

(2
01

2)
44

O
pt
im

iz
ed

20
48

-p
oi
nt

ba
se

d
12

×
G
T
X

48
0
(1
34

4.
96

pe
r
G
P
U
)

64
00

×
30

72
in

55
m
s

G
P
U

cl
us

te
r
fo
r
di
st
rib

ut
ed

ho
lo
gr
am

co
m
pu

ta
tio

n
(2
01

3)
77

S
pl
it
lo
ok

-u
p
ta
bl
e

9×
G
T
X

59
0
(2
48

8.
3
pe

r
G
P
U
)
an

d
14

×
Q
ua

dr
o
50

00
(7
22

.3
pe

r
G
P
U
)

A
co

m
pu

ta
tio

n
cl
us

te
r
w
ith

32
.5

T
F
LO

P
S

co
m
pu

tin
g
po

w
er

B
in
ar
y
de

to
ur
-p
ha

se
ho

lo
gr
am

s
(2
01

3)
33

B
in
ar
y
de

to
ur
-p
ha

se
m
et
ho

d
N
V
ID
IA

T
E
S
LA

C
20

50
(1
03

0.
4)

35
×
to

53
×
sp

ee
du

p
co

m
pu

te
d
to

A
M
D

P
he

no
m

98
50

C
P
U

Lo
ca

liz
ed

er
ro
r
di
ffu

si
on

an
d
re
di
st
rib

ut
io
n

(2
01

4)
78

Lo
ca

liz
ed

er
ro
r
di
ffu

si
on

an
d
re
di
st
rib

ut
io
n

(L
E
R
D
R
)
al
go

rit
hm

G
T
X

59
0
(2
48

8.
3)

20
48

×
20

48
in

6
m
s

3D
bi
na

ry
C
G
H

(2
01

4,
20

15
)6

4,
65

P
re
ca

lc
ul
at
ed

tr
ia
ng

ul
ar

m
es

h
G
T
X

77
0
(3
21

3.
3)

P
er
fo
rm

an
ce

is
be

tte
r
th
an

po
in
t-
ba

se
d

m
et
ho

ds
bu

t
sl
ow

er
th
an

tr
ia
ng

le
-b
as

ed
al
go

rit
hm

3D
ob

je
ct

tr
ac

ki
ng

m
as

k-
ba

se
d
no

ve
l-

lo
ok

-u
p-
ta
bl
e
(2
01

5)
79

O
T
M
-N

LU
T

3×
G
T
X

T
IT
A
N

(4
49

9.
7)

31
.1

F
P
S

of
F
re
sn

el
C
G
H

pa
tte

rn
s

F
ou

rie
r
ho

lo
gr
am

be
nc

hm
ar
ki
ng

(2
01

5)
62

K
in
of
or
m
,
de

to
ur

ph
as

e,
Le

e
an

d
B
ur
ck

ha
rd
t
m
et
ho

ds
N
V
ID
IA

T
E
S
LA

C
20

50
(1
03

0.
4)

S
pe

ed
-u
p
of

up
to

68
×
co

m
pa

re
d
to

A
M
D

P
he

no
m

98
50

C
P
U

F
as

t
oc

cl
us

io
n
pr
oc

es
si
ng

(2
01

6)
80

P
oi
nt
-s
ou

rc
e
an

d
w
av

e-
fie

ld
hy

br
id

G
T
X

78
0T

i(
50

45
.7
)

10
24

la
ye

rs
w
ith

6.
7
m
ill
io
n
po

in
ts

21
.2
8
m
s

G
P
U

fo
r
bl
oc

k-
ba

se
d
pa

ra
lle
lp

ro
ce

ss
in
g

(2
01

8)
71

10
K
-p
oi
nt

ba
se

d
G
T
X

10
80

T
i(
11

33
9.
7)

10
24

×
10

24
in

18
.7

m
s

P
ho

to
re
al
is
tic

C
G
H

be
nc

hm
ar
k
(2
01

8)
43

B
ac

kw
ar
d
ra
y-
tr
ac

in
g
an

d
w
av

ef
ro
nt
-r
ec

or
di
ng

pl
an

es
(W

R
P
s)

Q
ua

dr
o
M
50

00
(4
30

0.
8)

19
20

×
10

80
in

20
m
s

R
ea

l-t
im

e
co

lo
r
ho

lo
gr
ap

hi
c
re
co

ns
tr
uc

tio
n

(2
02

0)
81

P
oi
nt

cl
ou

d
ba

se
d

13
×
G
T
X

T
IT
A
N

X
(8
00

0)
19

20
×
10

80
R
G
B

+
al
ph

a
co

lo
ur
ed

at
38

.3
1
F
P
S

Wang et al.: Hardware implementations of computer-generated holography: a review

Optical Engineering 102413-12 October 2020 • Vol. 59(10)



CGH was reported in 2006 using HLSL and DirectX API, achieving a calculation speed 47×
faster than a Pentium 4 CPU.59

The use of OpenCL for parallel computing to generate holograms with an AMD HD5000
was reported by Shimobaba et al. in 2010.69

Since the release of CUDA, there has been a surging interest in the generation of computer
holograms utilizing the full credibility and computational power of GPUs.

The GPU microarchitectures have changed remarkably throughout the past decade, and the
increased computational power produced an improvement of at least 10 times. This performance
improvement can also be seen in the reported literature.

Shiraki et al.70 in 2009 reported a 1000 point light source (3D object) real-time holographic
video generation system using an NVIDIA GTX 280 utilizing Tesla microarchitecture. The gen-
erated hologram resolution was 1400 × 1050 pixels. The performance was later surpassed by the
introduction of GTX 1080Ti with Pascal microarchitecture in 2018.71 The system reported by
Kim et al. can produce real-time high definition holographic generation and projection using
10,000 points of light, a 10 times increment in terms of object-point counts than that of the
system reported in Ref. 70.

Table 3 provides a summary of some of the hardware implementations using different holo-
gram generation algorithms in recent literature.

3.7 Summary of GPUs

Traditionally, GPU vendors design their line of products in order to carry out single-precision
floating point operations effectively.82 Throughout the years, these vendors have worked to
redesign their products to allow for the use of half-precision numbers and fixed points.

GPUs are by design powerful single- and double-precision floating point hardware
accelerators, recent trends have led to the use of half-precision and fixed-point arithmetic,
which further enhanced the computational speed while making a trade-off in terms of
precision.

Due to the hardware and manufacturing constraints, the number of streaming (CUDA)
cores that can be embedded within a single GPU is limited. Therefore, in order to speed
up the hologram generation process, one practical solution is to form a GPU cluster using
multiple GPUs. This can be done either in a single stand-alone system74 or over a dedicated
network.44

In general, GPU offers a strong candidate for CGH systems.

4 Field Programmable Gate Arrays

FPGAs are highly configurable integrated circuits capable of being reprogrammed by designers
after manufacturing. This degree of flexibility enables designers users to implement logical hard-
ware designs during their product’s development stage and to assess performance before the
fabrication of expensive ASICs.

The three traditional vendors in this field are Intel, Xilinx, and Lattice. However, the growth
of the market has seen additional vendors arise, such as GOWIN semiconductors. The cost for a
single FPGA chip ranges from several dollars at the low-end to tens of thousands of dollars
depending on the performance and hardware requirements as well as the market capability.

As shown in Fig. 6, a typical FPGA architecture consists of the following five fundamental
elements:82,83

1. Functional unit: A fundamental programmable cell that implements both combinational
and sequential circuits. Depending on the vendors, these logic cells have been given differ-
ent names, e.g., Intel names these cells as logic array blocks, whereas Xilinx calls them
configuration logic blocks.

2. Interconnect fabric: A mesh of programmable wires to establish the signal connections
between functional units and inputs/outputs (I/Os).

3. Configuration memory blocks: A portion of on-board memory, which stores the syn-
thesized bitstream contents for the use of programming the functional units and fabrics.

Wang et al.: Hardware implementations of computer-generated holography: a review

Optical Engineering 102413-13 October 2020 • Vol. 59(10)



4. I/O interfaces: General purpose inputs and outputs connect the signal from the integrated
circuit to physical peripherals and I/O pins.

5. Digital signal processing blocks: Recent FPGAs incorporate dedicated “hard” digital sig-
nal processing blocks that support various precisions, either fixed-point or floating-point,
accumulations and multiplications to further boost the performance of FPGA-based
implementations.

The implementation of a functional unit is vendor specific. The units in Xilinx and Intel
FPGA products are SRAM-based, whereas those from the lattice semiconductors are based
on EEPROMs. Note that this can make it challenging to compare two FPGAs from different
vendors; a fact that should be kept in mind when assessing FPGA performance.

Given their dominance of high-performance FPGA product families, we will mainly focus on
FPGA products from Intel and Xilinx, and provide a comprehensive review based on their prod-
uct families.

Both Intel and Xilinx provide intellectual property (IP) cores that are programmable-
hardware implementations of application-specific peripherals and algorithms. These are opti-
mized for a given product line and should be used where possible to expedite development
time and boost performance.

4.1 Highly Configurable Hardware Platform

The key strength of FPGAs is its highly configurable and hardware-programmable nature. The
applications can be developed using computer-based hardware description languages (HDLs),
such as Verilog/SystemVerilog, VHDL, etc.83 These language-based designs are portable and
usually independent of technology, with the exception of applying IP cores and other chip-
specific configurations. The designers are able to repeatedly program and reconfigure a given
chip to affect changes at the hardware level and reuse designs across different FPGA chips that
are normally from the same vendor.

The ability for FPGAs to support HDLs provides a significant benefit in that almost all
on-chip cells are highly configurable and can be used to synthesize any possible hardware imple-
mentations as long as the designs can potentially be fitted into the available logic cells and hard-
ware units.

Fig. 6 A typical architecture of FPGA, which consists of logic cells, I/O ports, DSP blocks, block
memory, etc.

Wang et al.: Hardware implementations of computer-generated holography: a review

Optical Engineering 102413-14 October 2020 • Vol. 59(10)



4.2 Implementations Based on Fixed and Floating Point

Since FPGA platforms are highly reconfigurable, the use of either fixed point or floating-point
arithmetic becomes one of the most important design considerations. According to a report pro-
duced by Xilinx,82 FPGA applications will benefit from the conversion from floating-point to
fixed-point arithmetic for certain applications requiring less power but higher speed.

Floating-point precision typically includes IEEE 754 half-precision (16-bit), single-precision
(32-bit), and double-precision (64-bit) configurations, whereas fixed points are more flexible and
usually range from several bits to 32-bit in width.

Devices, such as GPUs, which are used in computationally heavy applications, have tradi-
tionally been designed architecturally so that they are more efficient when supporting floating-
point operations. When implemented on FPGAs at the hardware level, however, conventional
floating-point operations, e.g., based on GPUs or CPUs, are slower than fixed point alternatives.
This is due to the need and difficulty, which arises when controlling the mantissa and exponents
of IEEE 754 floating points during the calculations.84

4.3 Available Tools and Utilities for FPGAs

FPGAvendors typically provide their own proprietary tools. Intel’s Quartus Prime is widely used
among the community to facilitate development for Intel-based FPGAs. As for those devices
offered by Xilinx, there are development tools, such as the Vivado design suite, which has
replaced the Xilinx integrated synthesis environment (ISE).

ModelSim is a functional simulation software package from Mentor Graphics. It can be used
independently to simulate hardware based on HDL descriptions as well as being compatible with
Intel Quartus Prime, Xilinx ISE, and Vivado.

In addition, many hardware implementations use IP cores provided by the vendors to perform
certain operations on FPGAs.

Due to their unique nature, the FPGA development process is very distinct from traditional
CPUs and GPUs. A simplified overview is summarized as follows:83

1. Design specification and partition: These two initial steps set up the entry point for the
design.

2. Simulation and functional verification: This verification step tests the functionality of a
compiled design using a user-specified testbench file.

3. Design integration and verification: This step integrates all partitioned modules into one
large system (Table 4).

4. Presynthesis sign-off: At this stage, all the known functional errors should have been
eliminated.

5. Synthesis and implementation: Translates the HDL syntax and contents to an optimal
Boolean description that maps the selected FPGA chip. The language synthesis tool will
also remove redundant logic from the design if optimization is selected.

6. Configuration bitstream download: The development tool will map the synthesized HDL
to the selected chip and configure the logic unit blocks.

7. Prototype functional testing and verification: At this stage, the design is tested on hard-
ware to prove its functionality.

8. Final sign-off: All constraints should at this stage be satisfied and errors eliminated via
hardware and simulation debugging before the final chip production.

4.4 Development Time Using FPGAs

Generally, depending on the level of hardware complexity and the use of IP cores, the develop-
ment time might vary. For example, reported by Sugie et al.,93 the group took over 3 years to
develop and implement their algorithms into a custom-made bespoke FPGA platform consisting
of eight high-end FPGA chips.

The average development time for a project based on FPGA hardware implementations will
typically be significantly longer than an equivalent CPU or GPU project. Although not being
reported for CGH applications, a study conducted in 2012 estimated that developing algorithms

Wang et al.: Hardware implementations of computer-generated holography: a review

Optical Engineering 102413-15 October 2020 • Vol. 59(10)



on a GPU-based hardware platform for dense optical flow, stereo, and local image extraction
features takes ∼2 months for one full-time postdoctoral employee, whereas developing the same
algorithms and functionalities over an FPGA platform will likely take 12 months for two post-
doctoral employees.94 Overall, the development time for FPGA-based applications is likely to
take longer than the equivalent for an algorithm to be implemented on a GPU platform.

4.5 Advantages and Disadvantages of Using FPGAs

One of the merits of FPGA implementation is the potential to migrate a given FPGA register-
transfer level (RTL) design into ASICs. ASICs are dedicated chipsets specifically designed for a
certain application. They are inflexible and require significant one-off tooling costs; once designed,
they represent an optimal combination of performance, power, and cost for a given hardware accel-
erator. The performance can be optimized for the generation of computer holograms with the use of
ASIC technology. A recent work in 201795 demonstrated that an FPGA-based implementation can
be migrated into a very-large-scale integration (VLSI) without the need for vast modifications.

The potential for high performance at moderate power consumption along with the ability to
migrate a given design to an ASIC provides a strong argument for the use of FPGAs in CGH
applications.

Table 4 Tools and utilities reported for FPGA implementations in recent years.

Name Category Appearance Year

Intel

Quartus Design tools 85 2001

86 2002

87 2011

88 2012

89 2015

Max+Plus II Legacy design tool 86 2002

Xilinx

Vivado design suite Design tool 90 2019

ISE Design tool 91 2011

DisplayPort IP IP-core for DisplayPort 90 2019

MIG IP IP-core for memory interface 90 2019

AXI interconnect IP IP-core for AXI4 90 2019

Others

ModelSim Simulation tool 87 2011

88 2012

89 2015

Verilog HDL language 91 2011

88 2012

89 2015

VHDL HDL language 92 2010

87 2011

Wang et al.: Hardware implementations of computer-generated holography: a review

Optical Engineering 102413-16 October 2020 • Vol. 59(10)



As pointed out in Sec. 4.4, the most significant drawback for FPGA implementation is the
relatively long development time. FPGA-based hologram generation projects often require
years of work by a group of researchers. Moreover, the required knowledge in terms of under-
standing of hardware architecture and FPGA technology for the developers sets up a high entry
barrier.

4.6 Reported Work Using FPGAs

Table 5 summarizes recent implementations on FPGA platforms. Most of the hardware models
used in the lines of work are high-end FPGAs from Xilinx.

Holographic reconstruction (HORN) computers, which have been in active development by
Ito et al. since 1992,104 have provided the research community with many insights into the field
of CGH hardware implementation, notably the use of FPGAs for real-time hologram generation.
So far, there are, in total, eight generations of devices being produced by this group, ranging from
low-speed devices to high-speed special-purpose computers. The first four generations of HORN
use DSP or small-scale FPGA chips for real-time computation tasks.86,104–106 The later four gen-
erations of devices consist of large-scale FPGA chips embedded on delicate custom printed cir-
cuit boards.46,50,93,96,100 The latest product within this line of work is HORN-8, which comprises
seven powerful FPGA chips for calculation and one FPGA chip for communication. As reported
in Refs. 50 and 93, the HORN-8 special computer can generate a hologram for a 3D object of
10,000 points within 0.019 s with a peak performance of 0.5 tera floating-point operations per
second (TFLOPS) running at a 0.25 GHz clock cycle. At the time of writing, the team’s outlook
is to further develop an ASIC design based on the HORN-8 structure.107

Seo et al. proposed a hardware architecture based on pixel-by-pixel calculation
scheme.87,88,92,95 In this line of work, the authors efficiently reduced the number of memory
accesses by utilizing the pixel-by-pixel method, which is different from the conventional light
source-by-source calculation method. The authors also demonstrated a VLSI chip, based on
the proposed FPGA architecture.95 The work reported by Seo et al.95 demonstrated that it is
relatively simple to migrate an FPGA system into an ASIC design.

4.7 Summary of FPGAs

Benefiting from its highly configurable architecture, FPGAs are to date the most flexible hard-
ware accelerators for use in hologram generation applications. The required calculations in holo-
gram generation algorithms can take advantage of the high degree of parallelism within an FPGA
chip. However, the development time to implement optimized algorithms on FPGAs is typically
significant and requires an advanced skill set of HDLs, digital logic design, and hardware archi-
tecture, skills not typically present in traditional optics groups researching holography.

5 Review of other Available Hardware Platforms

In parallel to research on hardware implementations using hardware accelerators, such as GPUs
and FPGAs, there have been several attempts to implement holographic generation algorithms
within other existing platforms. This section aims to review some of the candidates.

5.1 Digital Signal Processors

DSPs are dedicated hardware platforms for signal processing applications. The microprocessors
have architectures that are tuned for analog and digital signal processing tasks with the ability to
support single instruction multiple data (SIMD).

Nishikawa et al. reported the use of a DSP to generate holographic images in the late
1990s.108 A multi-DSP system consisting of 3 × 4 i860 DSPs was proposed to generate 3D
objects for the application. The 3D object consists of 200 points and is 640 × 480 pixels in size.
The multi-DSP system takes 68 s to generate the object as opposed to a reference workstation
(SPARCstation 10), which generates the object in 291 s.

Wang et al.: Hardware implementations of computer-generated holography: a review

Optical Engineering 102413-17 October 2020 • Vol. 59(10)



T
ab

le
5

A
su

m
m
ar
y
of

C
G
H

im
pl
em

en
te
d
on

F
P
G
A
s
si
nc

e
20

08
.

P
ro
je
ct

an
d
ap

pl
ic
at
io
n
(y
ea

r)
Im

pl
em

en
te
d
al
go

rit
hm

H
ar
dw

ar
e
m
od

el
P
ix
el

si
ze

an
d
pe

rf
or
m
an

ce

H
O
R
N

5
2-
di
m
en

si
on

al
F
F
T
(2
00

8)
96

–
99

P
ha

se
co

m
pu

ta
tio

n
by

ad
di
tio

n,
po

in
t-
cl
ou

d
4×

X
ili
nx

X
C
2V

P
70

an
d
1×

X
C
2V

10
00

3D
im

ag
e
w
ith

10
,0
00

po
in
ts

at
30

F
P
S

H
O
R
N

6
(2
00

9)
10

0
P
ha

se
co

m
pu

ta
tio

n
by

ad
di
tio

n,
po

in
t-
cl
ou

d
A

16
-b
oa

rd
cl
us

te
r
ea

ch
co

nt
ai
ni
ng

4×
X
ili
nx

X
C
2V

P
70

an
d
1×

X
C
2V

10
00

67
.9

m
s
pe

r
ho

lo
gr
am

R
ea

lti
m
e
ho

lo
gr
am

ge
ne

ra
tio

n
(2
01

0)
92

40
,0
00

po
in
t
lig
ht

so
ur
ce

s
X
ili
nx

X
C
2V

P
70

14
08

×
10

50
in

9.
3
m
s

C
el
l-b

as
ed

ha
rd
w
ar
e
ar
ch

ite
ct
ur
e
(2
01

1)
87

P
oi
nt

lig
ht

so
ur
ce

A
lte

ra
(n
o
sp

ec
ifi
c
m
od

el
no

.)
14

08
×
10

50
in

15
.8

m
s

O
ne

-s
te
p
ph

as
e-
re
tr
ie
va

l(
20

11
)9

1
O
S
P
R

X
ili
nx

V
irt
ex

-4
S
X
35

51
2
×
51

2
in

0.
9
m
s

P
ix
el
-b
y-
pi
xe

lh
ar
dw

ar
e
si
m
ul
at
io
n
(2
01

2)
88

P
ix
el

by
pi
xe

la
nd

pa
ra
lle
ls

ch
em

es
A
lte

ra
si
m
ul
at
io
n

P
er
fo
rm

an
ce

no
t
m
ea

su
re
d
in

ph
ys
ic
al

ha
rd
w
ar
e
im

pl
em

en
ta
tio

n

H
O
R
N

7
(2
01

2,
20

13
)1

01
,1
02

P
ha

se
co

m
pu

ta
tio

n
by

ad
di
tio

n,
po

in
t-
cl
ou

d
X
ili
nx

V
irt
ex

-6
M
L6

05
2
m
ill
io
n
pi
xe

ls
of

16
,0
00

po
in
ts

in
0.
4
s

F
ul
la

na
ly
tic
al

F
ra
un

ho
fe
r
C
G
H

(2
01

5)
89

P
ol
yg

on
ba

se
d

A
lte

ra
C
yc

lo
ne

IV
E
P
4C

E
11

5
80

0
×
60

0
in

9.
6
m
s

H
O
R
N

8
(2
01

8)
50

,9
3

A
m
pl
itu

de
m
od

ul
at
io
n,

93
ph

as
e
m
od

ul
at
io
n5

0

po
in
t-
cl
ou

d
7×

X
ili
nx

V
irt
ex

5
X
C
5V

LX
11

0
an

d
1×

X
C
5V

LX
30

T
A
n
ef
fe
ct
iv
e
sp

ee
d
eq

ui
va

le
nt

to
0.
5
P
F
LO

P
S
,

19
20

×
10

80
65

00
0
po

in
ts

at
8.
3
F
P
S

C
lu
st
er
ed

H
O
R
N

8
(2
01

8)
10

3
S
pa

tio
te
m
po

ra
ld

iv
is
io
n
po

in
t-
cl
ou

d
8×

H
O
R
N

8
bo

ar
ds

19
20

×
10

80
65

,0
00

po
in
ts

at
63

F
P
S

S
in
gl
e-
ch

ip
vi
de

o
pr
oc

es
so

r
(2
01

9)
90

La
ye

r
ba

se
d

X
ili
nx

X
C
K
U
11

5
19

20
×
10

80
R
G
B

at
16

F
P
S

Wang et al.: Hardware implementations of computer-generated holography: a review

Optical Engineering 102413-18 October 2020 • Vol. 59(10)



The most recent work was reported by Oi et al.109 Twenty TMS320C6727 DSPs running
floating-point arithmetic was used to form the DSP block in the proposed system. These DSPs
were dedicated to the conversion of integral photography images to holograms in the Fresnel
diffraction domain. With a 1.5× redundancy design, a real-time performance of 50 FPS was
achieved.

The current highest-end DSP products are those from Analog Devices and Texas Instruments.
ATI TMS320C6678 eight-core floating-point DSP runs at a clock rate of 1 GHz to 1.4 GHz, with
a maximum computational performance of 20 GFLOPS per core for single-precision floating-
point operations.110 It is unlikely that these DSPs will be capable of performing complicated
hologram generation algorithms due to the hardware specifications and limited computational
power. However, it is still worthwhile to regard DSP as a valuable candidate to implement less
complicated algorithms due to their low power profile and ease of programming. DSPs are typ-
ically programmed using C language and assemblies. The toolchain support is considered mature
and time-proven, further minimizing the development time and difficulty.53

5.2 Xeon Phi Coprocessor and ClearSpeed Accelerator Board

Xeon Phi is a family of coprocessors with x86 manycore architecture designed and produced
by Intel.111 It is to-date one of the few fairly powerful many-core coprocessors that are intended
for use in hardware acceleration applications.112 This line of products supports the use of
OpenMP.113 As was introduced in Sec. 2.2, OpenMP is an API that is optimized for shared
memory multiprocessing programming and exploits multithread parallelism.

Murano et al. in 2014 reported on the use of a Xeon Phi coprocessor unit (Xeon Phi
5110P) for computer hologram generation.114 The authors used the Intel MKL for the cal-
culation of FFTs along with the OpenMP functionalities to make use of the available
cores present in the coprocessor. Their results show that in all their test cases, GPU outper-
forms the Xeon Phi accelerator by a significant margin. However, when using Xeon Phi
coprocessor, the amount of existing code that needs to be rewritten in order to port soft-
ware-based algorithms into the hardware accelerator, as compared to that in the GPU case,
can be minimized.

Another hardware acceleration board, ClearSpeed Advance Dual CSX600, was demon-
strated in 2009.115 The authors were able to speed up the point cloud hologram calculation
56× faster than an Intel Xeon CPU performing calculation in single core. Unfortunately, as
of the writing of this survey, the production of ClearSpeed accelerator boards is no longer active.

5.3 System-on-Chip Hybrid CPU and FPGA

There is a growing need for hologram generation systems to become compact and low in power
consumption. A trend toward system-on-chip (SoC) utilizing the heterogeneous system archi-
tecture (HSA) has been rapidly growing over the years. The general idea behind SoC is to incor-
porate different devices and peripherals on a single chip to reduce the overall die area and to
minimize power consumption.116 One hybrid product is to have both FPGA and microprocessors
or CPUs onboard one chip. A further discussion is present in Sec. 6.5.

In one of the most recent studies conducted by Yamamoto et al., the authors developed a
compact holographic computer using a Xilinx Zynq UltraScale+ MPSoC consisting of an ARM
CPU and an FPGA on one single chip.117 The reported system was able to reproduce 1920 ×
1080 pixels 3D video at a rate of 15 frames/s.117 They also compared the result to the perfor-
mance of a Jetson TX1 platform,118 the calculation time of 1920 × 1080 pixels with 6500 points
on the SoC platform took 0.066 s, whereas the Jetson TX1 took 1.294 s.

The development time for these SoC hardware implementations would be even longer than
that of pure FPGA developments since the incorporation of both CPU, which requires multi-
thread programming, and FPGA, which uses HDLs, adds another level of complexity when
highly optimized codes and algorithms are needed. However, the power efficiency, die area,
and package size scale-down can bring about other benefits that mitigate the increased program-
ming workload.

Wang et al.: Hardware implementations of computer-generated holography: a review

Optical Engineering 102413-19 October 2020 • Vol. 59(10)



6 Discussion

As shown in Fig. 7, most of the reported work included in this survey implemented algorithms
using GPU platforms, totaling 24 papers, as compared to other accelerator platforms between
2008 and 2020. FPGA-based systems are popular as well, reaching up to 16 published papers. In
particular, the line of work exemplified by the HORN group exploits the potential of FPGA
parallelism for fast hologram generation.

There are also a number of research papers implementing algorithms with CPUs only, how-
ever, as discussed in Sec. 2.1, most of them tend to focus on the development of novel algorithms
and choose a PC platform without hardware accelerators as a means of algorithm evaluation and
verification.

It is worth noting that cross-platform comparisons based solely on the calculation speed
are not strictly reasonable. This is because different platforms incorporate different architectures
and have different toolchain supports. Essentially, the algorithms implemented despite best
efforts can still be fundamentally different across multiple platforms. Therefore, it is of great
essence that analytical models with key performance metrics, which consider not only FPS and
power efficiency but also other factors, be proposed to assess performances over different
hardware.

We summarize the hardware specifications for the reviewed hardware and provide a general
comparison between these platforms in Table 6. The table shows the difference in terms of the
number of cores, serial or parallel architectures, clock frequencies, the estimated development
times, power efficiencies, and software portability.

We conclude the six key considerations when selecting a suitable hardware platform for
CGH-related implementations:

1. Hardware manufacturing constraints.
2. Toolchain support.
3. Fixed point or floating-point arithmetic.
4. Parallel and sequential processing, as shown in Fig. 8.
5. Development time.
6. Portability of software.

Fig. 7 A comparison of CPU, GPU, FPGA, and other hardware implementations in recent existing
literature (2008 to 2020).

Wang et al.: Hardware implementations of computer-generated holography: a review

Optical Engineering 102413-20 October 2020 • Vol. 59(10)



6.1 Toolchain Support

One of the most important aspects to consider is the full-cycle development toolchain support.
CPU and GPU platforms are likely to be less affected by the lack of available software package
and library supports, as discussed in the previous sections. However, FPGAs and other accel-
erators, such as DSPs and coprocessors, might suffer from the lack of active development sup-
port and will, in turn, affect the overall development process. In general, the availability of tools

Table 6 General comparison between CPU, GPU, FPGA, DSP, and other platforms.

Platform
Number
of cores

Serial or
parallel

Clock
frequency

Development
time Power efficiency Portability

CPU Low Mainly
serial

High Short Average Straightforward

GPU High Parallel High Average Low Less challenging

FPGA High Parallel Low Long High (less power
consumption,
depending on
implementation)

Difficult when
vendor-specific
IP-cores are used

DSP Low Mainly
serial

Average
to high

Average Average Simple (from low- to
higher-performance)

Xeon Phi/
ClearSpeed

Average Serial with
many-core
parallel

Average Short Average Average

Heterogeneous
SoC, e.g.,
FPGA + CPU

High Serial and
parallel

Low Long High Platform dependent

Fig. 8 Different levels of parallelism and concurrency on hardware platforms. The left-hand side
depicts the CPU instruction pipeline and processor-level parallelization, whereas the right-hand
side shows the FPGA parallelization at the equivalent levels. Hardware clustering at the board
level further exploits parallelism.

Wang et al.: Hardware implementations of computer-generated holography: a review

Optical Engineering 102413-21 October 2020 • Vol. 59(10)



and utilities to support the dedicated hardware creates a resource barrier toward the successful
implementation.

6.2 Choice of Algorithms and Parallel/Sequential Processing

Many algorithms exist for 2D/3D hologram generation. Different algorithms would require dif-
ferent hardware resources in practice, e.g., triangular-mesh based algorithms can take advantage
of being compatible with modern computer graphics technologies utilizing polygon meshes for
object computations.13 Regardless of the algorithm used, the size, e.g., hologram resolution size
and number of points/polygons, is an important consideration in all cases, and more importantly,
increasingly complex holograms demands larger and better hardware.

GPUs and other specialized hardware accelerators are useful to the speed enhancement of
hologram calculation by utilizing parallelism and optimizing for sequential processing. For
example, in the point-cloud-based calculation, the hologram patterns are calculated using the
same mathematical formula, and more importantly, the calculation of these patterns for each
object point is independent of other object points.13 The independent calculation of object points
can potentially make use of parallel processing for hardware platforms.

Moreover, for CGH algorithms involving FFT operations and depending on the hardware
utilized, the FFT operations can be parallelized through different cores or pipelines at the proc-
essor level, as shown in Fig. 8.

It is also of great importance, though being algorithm-dependent, to be aware of the number
of sequential processes required and optimize for performance while exploiting concurrency and
parallelism within the specified hardware. For example, iterative algorithms, such as the
Gerchberg–Saxton algorithm,119 require sequential processing that cannot or tend to be difficult
to parallelize and multitask. It is then of the developer’s responsibility to select a platform that
does not only fulfill the need for parallelism but also has options to optimize for the sequential
operations when implementing the desired algorithm.

6.3 Portability of Software

It is essential to consider the possibility of transferring the developed software and firmware from
one system to another while keeping in mind the trade-offs between portability and performance.
This transfer would likely be required when upgrades toward newer generations of hardware are
expected or performance comparisons between different devices are needed.

The most straightforward transfer comes when the CPU platform, which is usually based on a
PC, is used. Upgrading between different operating systems and software platforms is compa-
ratively simple due to the abundant software support. In comparison, porting from one NVIDIA
GPU to another would sometimes require more work, although CUDA provides a unified devel-
opment environment. This is mainly due to the upgrades in hardware between different gener-
ations of GPU products. As for intrageneration code transplant, it is usually not challenging, as
long as the memory and computational power limitations have been taken into account by the
developer.

Code transfer among different FPGA platforms, on the contrary, would be slightly difficult,
especially when target chip IP cores are used for the application. With the above noted, trans-
ferring from a lower performance FPGA to an FPGAwith higher performance can be relatively
simple, this will likely be the case when HDL descriptions are used.

6.4 Hologram Generation Quality Assessment

An end-to-end CGH hardware implementation assessment should include fast generation, hard-
ware performance, and generated quality assessment of the holograms.

There currently is a lack of available unified criterion to assess the quality of computer holo-
grams generated from different platforms. Kim et al.90 use a modulation transfer function to
compare the image quality of different holograms. Structural similarities have also been used
in the Ref. 49 to evaluate the quality of the generated images. Another widely used metrics is to

Wang et al.: Hardware implementations of computer-generated holography: a review

Optical Engineering 102413-22 October 2020 • Vol. 59(10)



measure the mean square error and peak signal-to-noise ratio.120 Blinder et al.121 provided a more
detailed review of the quality assessment for computer-generated holograms.

6.5 Heterogeneous Computing and its Related Hardware

There is a growing trend in the embedded systems, image and video processing communities to
incorporate the state-of-the-art heterogeneous computing systems into their applications.

Heterogeneous computing systems typically refer to systems that fuse more than one type of
processors or cores together,122 it could also refer to systems that combine a large number of
processor cores with the same instruction set architecture (ISA),53 e.g., Intel Xeon Phi, or a small
number of cores with different execution performances, e.g., ARM big. Little platform.123 In this
section, we focus mainly on the development and trend in heterogeneous hardware accelerators
that incorporate different types of ISA devices.

These hardware systems take advantage of conventional multicore hardware accelerators
while, in the meantime, bypassing some of the limitations and disadvantages of using a single
hardware accelerator architecture.116 The aims of having the HSA are to reduce the communi-
cation latency between different computing devices and to improve the parallel execution
performance.116

The level of heterogeneity in a computing system gradually increases with more and more
SoC platforms being produced. Among various of heterogeneous hardware platforms, the com-
bination of CPUs and FPGAs, usually in the form of hard ARM processors embedded in an
FPGA, as well as CPUs with DSPs, are potentially good candidates for low-cost low-power
hologram generation platforms due to their inherent merits that balance the pros and cons of
conventional system architectures.

Another heterogeneous computing platform worth mentioning is the Jetson module. Only the
Jetson TX1118 was evaluated in the work.117 Its upgraded version TX2124 and the most recent
AGX Xavier,125 both with boosted performance and power efficiency, are also of implementation
interest. A low-cost variant of the Jetson family, Jetson NANO, has also become available in the
market recently.126 A list of the Jetson family is shown in Table 7.

6.6 Future Trend in Embedded Systems and High-Performance Hardware
Platforms

ARM developed the Neon technology for its Cortex-A series and R52 processors as an advanced
SIMD architecture extension for image and video as well as general signal processing
purposes.128 No reported work to-date has exploited the possibility of integrating an ARM-based
SoC embedded platform for the generation of computer holograms while utilizing technologies
such as Neon.

NVIDIA recently announced its plan to bring CUDA acceleration to the ARM ecosystem.129

This will potentially bring the power and accessibility of CUDA to platforms, such as ARM-
based SoCs. This is also accompanied by the introduction of CUDA-X high-performance

Table 7 NVIDIA Jetson module products family.

Model (year of launch) GPU Computational power Power (W)

TX1 (2015)118 Maxwell Over 1 Tera-FLOPS Under 10

TX2 series (2017)124 Pascal 1.3 TFLOPS 7.5–20

AGX XAVIER series (2018)125 Volta with tensor cores 20-32 Tera-operations
per second (TOPS)

10–30

Nano (2019)126 Maxwell 472 GFLOPS 5–10

Xavier NX (2019/2020)127 Volta with tensor cores 21 TOPS 10–15

Wang et al.: Hardware implementations of computer-generated holography: a review

Optical Engineering 102413-23 October 2020 • Vol. 59(10)



computing libraries, which can potentially further exploit parallelism and provide improved
processing performance.130

From another perspective, the recently announced Vitis Unified Software Platform from
Xilinx provides another degree of flexibility to use high-level synthesis FPGA languages in order
to help reduce the development overhead of FPGA applications.131 This unified platform is envi-
sioned to shorten the overall development time with higher level implementations without the
need of fully incorporating RTL-level development and to provide better programmability for the
FPGA hardware.

7 Future Work and Conclusions

CGH calculations primarily require a high degree of computation parallelism, thus embracing
the use of hardware accelerators, such as GPUs, FPGAs, etc., for the realization of real-time
computer-generated holograms.

It is anticipated that there will be two separate research paths that lead toward the future of
CGH hardware implementations, including:

1. High-performance hardware platforms for real-time CGH generations and displays: These
systems will usually be of high costs and require a long development cycle. Algorithms for
future fast computer hologram generations will likely be developed using these hardware
platforms for first-phase verifications and optimizations. A good example is the HORN-8
special purpose computer.50,93,103 The team has recently announced their future outlook to
build ASIC devices to further boost the performance.107

2. Embedded computers and systems for low-power and low-cost applications: In order for
this ultimate display technology to become reachable to ordinary households and individ-
ual consumers, a reduction in cost and a significant reduction in volumes and sizes are
essential. A large amount of work can potentially be done on SoC platforms, e.g., CPU-
FPGA, CPU-DSP devices, as well as on supercomputer-on-a-module embedded comput-
ing devices.132 Examples that demonstrate the implementations for embedded systems are
those from Kim et al.90 and Yamamoto et al.117

In this review paper, we have attempted to provide a useful review on the hardware imple-
mentations on CGH as well as to provide practical information about the current state-of-the-art
hardware platforms that can be selected by researchers and developers to implement computer
hologram generation algorithms for their specific applications.

A key insight from this review is that the potential for real-time holography exists today
without the need for bespoke hardware. A flagship GPU can process an entire holographic frame
in 20 ms, providing high-quality CGH in real-time. We predict holography transitioning toward
mobile and embedded platforms, a trend evidenced by extrapolating from the growth of GPU
computational power in Table 7. Bespoke hardware accelerators, such as FPGAs and ASICs,
shall continue to advance the field of CGH hardware in this period, pushing the boundaries on
what is achievable in terms of computation power, energy consumption, and overall system cost.

References

1. J. W. Goodman, “Introduction to Fourier optics,” in Introduction to Fourier Optics, J. W.
Goodman, Ed., 3rd ed., Vol. 1, Roberts & Co. Publishers, Englewood, Colorado (2005).

2. D. Gabor, “A new microcopic principle,” Nature 161(4098), 777–778 (1948).
3. B. R. Brown and A. W. Lohmann, “Complex spatial filtering with binary masks,” Appl.

Opt. 5(6), 967–969 (1966).
4. M. Lucente, “The first 20 years of holographic video—and the next 20,” in 2nd Annu.

Int. Conf. Stereoscopic 3D Media and Entertainment, SMPTE, pp. 1–16 (2011).
5. A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic near-eye displays for virtual and

augmented reality,” ACM Trans. Graphics 36(4), 1–16 (2017).
6. B. Robertson et al., “Demonstration of multi-casting in a 1×9 LCOS wavelength selective

switch,” J. Lightwave Technol. 32(3), 402–410 (2014).

Wang et al.: Hardware implementations of computer-generated holography: a review

Optical Engineering 102413-24 October 2020 • Vol. 59(10)

https://doi.org/10.1038/161777a0
https://doi.org/10.1364/AO.5.000967
https://doi.org/10.1364/AO.5.000967
https://doi.org/10.1145/3072959
https://doi.org/10.1109/JLT.2013.2293919


7. R. W. Bowman et al., “Red tweezers: fast, customisable hologram generation for optical
tweezers,” Comput. Phys. Commun. 185(1), 268–273 (2014).

8. W. A. Crossland et al., “Telecommunications applications of LCOS devices,” Mol. Cryst.
Liq. Cryst. Sci. Technol. Sec. A 375, 1–13 (2002).

9. F. Yaras, H. Kang, and L. Onural, “State of the art in holographic displays: a survey,” IEEE/
OSA J. Disp. Technol. 6(10), 443–454 (2010).

10. G. Nehmetallah and P. P. Banerjee, “Applications of digital and analog holography in three-
dimensional imaging,” Adv. Opt. Photonics 4(4), 472–553 (2012).

11. J. Liu et al., “Overview of fast algorithm in 3D dynamic holographic display,” Proc. SPIE
8913, 89130X (2013).

12. T. Nishitsuji et al., “Review of fast calculation techniques for computer-generated holo-
grams with the point-light-source-based model,” IEEE Trans. Ind. Inf. 13(5), 2447–2454
(2017).

13. J. H. Park, “Recent progress in computer-generated holography for three-dimensional
scenes,” J. Inf. Disp. 18(1), 1–12 (2017).

14. P. W. M. Tsang, T.-C. Poon, and Y. M. Wu, “Review of fast methods for point-based com-
puter-generated holography [Invited],” Photonics Res. 6(9), 837 (2018).

15. T. Shimobaba, T. Kakue, and T. Ito, “Review of fast algorithms and hardware implemen-
tations on computer holography,” IEEE Trans. Ind. Inf. 12(4), 1611–1622 (2016).

16. T. Shimobaba and T. Ito, Computer Holography Acceleration Algorithms and Hardware
Implementations, 1st ed., CRC Press, Boca Raton (2019).

17. D. Gabor, W. E. Kock, andW. S. George, “Holography,” Science 173(3991), 11–23 (1971).
18. S. Reichelt et al., “Full-range, complex spatial light modulator for real-time holography,”

Opt. Lett. 37(11), 1955–1957 (2012).
19. A. J. Macfaden and T. D. Wilkinson, “Characterization, design, and optimization of a two-

pass twisted nematic liquid crystal spatial light modulator system for arbitrary complex
modulation,” J. Opt. Soc. Am. A 34(2), 161–170 (2017).

20. T. Kurihara and Y. Takaki, “Shading of a computer-generated hologram by zone plate
modulation,” Opt. Express 20(4), 3529–3540 (2012).

21. R. H.-Y. Chen and T. D. Wilkinson, “Computer generated hologram with geometric
occlusion using GPU-accelerated depth buffer rasterization for three-dimensional display,”
Appl. Opt. 48(21), 4246–4255 (2009).

22. S. Liu et al., “Occlusion calculation algorithm for computer generated hologram based on
ray tracing,” Opt. Commun. 443, 76–85 (2019).

23. J. Xiao et al., “On-axis near-eye display system based on directional scattering holographic
waveguide and curved goggle,” Opt. Express 27(2), 1683–1692 (2019).

24. Y. Nagahama et al., “Image quality improvement of random phase-free holograms by
addressing the cause of ringing artifacts,” Appl. Opt. 58(9), 2146–2151 (2019).

25. G. Li et al., “Space bandwidth product enhancement of holographic display using high-order
diffraction guided by holographic optical element,” Opt. Express 23(26), 33170–33183
(2015).

26. E. Buckley, “Computer-generated phase-only holograms for real-time image display,” in
Advanced Holography—Metrology and Imaging, I. Naydenova, Ed., pp. 277–304, InTech,
London (2011).

27. J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Approach,
5th ed., Morgan Kaufmann Publishers Inc., San Francisco, California (2011).

28. M. Nemirovsky and D. Tullsen, Multithreading Architecture, Synthesis Lectures in
Computer Architecture, Morgan & Claypool Publishers, San Rafael, California (2013).

29. OpenMP Architecture Review Board, “OpenMP FAQ,” (2018).
30. S.-C. Kim and E.-S. Kim, “Effective generation of digital holograms of three-dimensional

objects using a novel look-up table method,” Appl. Opt. 47(19), D55–D62 (2008).
31. S.-C. Kim and E.-S. Kim, “Fast computation of hologram patterns of a 3D object using run-

length encoding and novel look-up table methods,” Appl. Opt. 48(6), 1030–1041 (2009).
32. J. Jia et al., “Reducing the memory usage for effectivecomputer-generated hologram cal-

culation using compressed look-up table in full-color holographic display,” Appl. Opt.
52(7), 1404–1412 (2013).

Wang et al.: Hardware implementations of computer-generated holography: a review

Optical Engineering 102413-25 October 2020 • Vol. 59(10)

https://doi.org/10.1016/j.cpc.2013.08.008
https://doi.org/10.1080/10587250210552
https://doi.org/10.1080/10587250210552
https://doi.org/10.1109/JDT.2010.2045734
https://doi.org/10.1109/JDT.2010.2045734
https://doi.org/10.1364/AOP.4.000472
https://doi.org/10.1117/12.2034790
https://doi.org/10.1109/TII.2017.2669200
https://doi.org/10.1080/15980316.2016.1255672
https://doi.org/10.1364/PRJ.6.000837
https://doi.org/10.1109/TII.9424
https://doi.org/10.1126/science.173.3991.11
https://doi.org/10.1364/OL.37.001955
https://doi.org/10.1364/JOSAA.34.000161
https://doi.org/10.1364/OE.20.003529
https://doi.org/10.1364/AO.48.004246
https://doi.org/10.1016/j.optcom.2019.03.007
https://doi.org/10.1364/OE.27.001683
https://doi.org/10.1364/AO.58.002146
https://doi.org/10.1364/OE.23.033170
https://doi.org/10.1364/AO.47.000D55
https://doi.org/10.1364/AO.48.001030
https://doi.org/10.1364/AO.52.001404


33. G. Makey, M. S. El-Daher, and K. Al-Shufi, “Accelerating the calculations of binary detour
phase method by integrating both CUDA and Matlab programming for GPU’s parallel
computations,” Optik 124(22), 5486–5488 (2013).

34. P. Memmolo et al., “Investigation on specific solutions of Gerchberg-Saxton algorithm,”
Opt. Lasers Eng. 52(1), 206–211 (2014).

35. Z. Wang et al., “Highly efficient calculation method for computer-generated holographic
stereogram using a lookup table,” Appl. Opt. 58(5), A41–A47 (2019).

36. A. T. S. Ymeonidou et al., “Efficient holographic video generation based on rotational
transformation of wavefields,” Opt. Express 27(26), 37383–37399 (2019).

37. T. Shimobaba et al., “Computational wave optics library for C++: CWO++ library,”
Comput. Phys. Commun. 183(5), 1124–1138 (2012).

38. T. Shimobaba and T. Ito, “Fast generation of computer-generated holograms using wavelet
shrinkage,” Opt. Express 25(1), 77–87 (2017).

39. T. Shimobaba et al., “Fast, large-scale hologram calculation in wavelet domain,” Opt.
Commun. 412, 80–84 (2018).

40. T. Shimobaba et al., “Fast hologram calculation using wavelet transform,” Proc. SPIE
10964, 109642I (2018).

41. T. Shimobaba, N. Masuda, and T. Ito, “Simple and fast calculation algorithm for computer-
generated hologram with wavefront recording plane,” Opt. Lett. 34(20), 3133–3135
(2009).

42. K. Matsushima and S. Nakahara, “Extremely high-definition full-parallax computer-
generated hologram created by the polygon-based method,” Appl. Opt. 48(34), H54–H63
(2009).

43. Y. Wang et al., “Real-time photorealistic computer-generated holograms based on back-
ward ray tracing and wavefront recording planes,” Opt. Commun. 429, 12–17 (2018).

44. N. Takada et al., “Fast high-resolution computer-generated hologram computation
using multiple graphics processing unit cluster system,” Appl. Opt. 51(30), 7303–7307
(2012).

45. J. Carpenter and T. D. Wilkinson, “Graphics processing unit-accelerated holography by
simulated annealing,” Opt. Eng. 49(9), 095801 (2010).

46. S. Yamada et al., “Full-color computer-generated hologram using wavelet transform and
color space conversion,” Opt. Express 27(6), 8153–8167 (2019).

47. P. Pozzi et al., “Fast calculation of computer generated holograms for 3D photostimulation
through compressive-sensing Gerchberg–Saxton algorithm,” Methods Protoc. 2(1), 1–11
(2019).

48. Y. Nagahama et al., “Holographic multi-projection using the random phase-free method,”
Appl. Opt. 55(5), 1118–1123 (2016).

49. D. Arai et al., “An accelerated hologram calculation using the wavefront recording plane
method and wavelet transform,” Opt. Commun. 393, 107–112 (2017).

50. T. A. A. Kamatsu et al., “Special-purpose computer HORN-8 for phase-type electro-
holography,” Opt. Express 26(20), 26722–26733 (2018).

51. NVIDIA, “NVIDIA launches the world’s first graphics processing unit: GeForce 256”
(1999).

52. NVIDIA, “CUDA C programming guide” (2019).
53. A. HajiRassouliha et al., “Suitability of recent hardware accelerators (DSPs, FPGAs, and

GPUs) for computer vision and image processing algorithms,” Signal Process. Image
Commun. 68, 101–119 (2018).

54. Intel, “Intel Xeon processor E7 family” (2019).
55. Wikipedia, “List of Nvidia graphics processing units” (2019).
56. NVIDIA, “NVIDIA Geforce introduction” (2019).
57. P. N. Glaskowsky, “NVIDIA’s Fermi: the first complete GPU computing architecture

[white paper],” Technical Report, NVIDIA (2009).
58. NVIDIA, “NVIDIA turing GPU [white paper],” Technical Report, NVIDIA (2018).
59. T. Ito et al., “Computer generated holography using a graphics processing unit,” Opt.

Express 14(2), 603–608 (2006).
60. NVIDIA, “CuFFT library user’s guide,” Technical Report, NVIDIA (2019).

Wang et al.: Hardware implementations of computer-generated holography: a review

Optical Engineering 102413-26 October 2020 • Vol. 59(10)

https://doi.org/10.1016/j.ijleo.2013.03.170
https://doi.org/10.1016/j.optlaseng.2013.06.008
https://doi.org/10.1364/AO.58.000A41
https://doi.org/10.1364/OE.27.037383
https://doi.org/10.1016/j.cpc.2011.12.027
https://doi.org/10.1364/OE.25.000077
https://doi.org/10.1016/j.optcom.2017.11.066
https://doi.org/10.1016/j.optcom.2017.11.066
https://doi.org/10.1117/12.2505810
https://doi.org/10.1364/OL.34.003133
https://doi.org/10.1364/AO.48.000H54
https://doi.org/10.1016/j.optcom.2018.07.068
https://doi.org/10.1364/AO.51.007303
https://doi.org/10.1117/1.3484950
https://doi.org/10.1364/OE.27.008153
https://doi.org/10.3390/mps2010002
https://doi.org/10.1364/AO.55.001118
https://doi.org/10.1016/j.optcom.2017.02.038
https://doi.org/10.1364/OE.26.026722
https://doi.org/10.1016/j.image.2018.07.007
https://doi.org/10.1016/j.image.2018.07.007
https://doi.org/10.1364/OPEX.14.000603
https://doi.org/10.1364/OPEX.14.000603


61. S. Memeti et al., “Benchmarking OpenCL, OpenACC, OpenMP, and CUDA,”
in Workshop Adapt. Resour. Manage. and Scheduling Cloud Comput., ACM, pp. 1–6
(2017).

62. G. Makey, M. S. El-Daher, and K. Al-Shufi, “Modification of common Fourier computer
generated hologram’s representation methods from sequential to parallel computing,”
Optik 126(11–12), 1067–1071 (2015).

63. Y. Pan et al., “Fast CGH computation using S-LUT on GPU,” Opt. Express 17(21),
18543–18555 (2009).

64. F. Yang, A. Kaczorowski, and T. D. Wilkinson, “Fast precalculated triangular mesh algo-
rithm for 3D binary computer-generated holograms,” Appl. Opt. 53(35), 8261–8267
(2014).

65. F. Yang, A. Kaczorowski, and T. D. Wilkinson, “Enhancing the quality of reconstructed 3D
objects by using point clusters,” Appl. Opt. 54(18), 5726–5733 (2015).

66. M. Lucente and T. A. Galyean, “Rendering interactive holographic images,” in Proc. 22nd
Annu. Conf. Comput. Graphics and Interact. Tech., pp. 387–394 (1995).

67. C. Petz and M. Magnor, “Fast hologram synthesis for 3D geometry models using graphics
hardware,” Proc. SPIE 5005, 266–275 (2003).

68. L. Ahrenberg and J. Watson, “Computer generated holography using parallel commodity
graphics hardware,” Opt. Express 5664(17), 603–608 (2006).

69. T. Shimobaba et al., “Fast calculation of computer-generated-hologram on AMD HD5000
series GPU and OpenCL,” Opt. Express 18(10), 9955–9960 (2010)..

70. A. Shiraki et al., “Simplified electroholographic color reconstruction system using
graphics processing unit and liquid crystal display projector,” Opt. Express 17(18),
16038–16045 (2009).

71. D.-W. Kim, Y.-H. Lee, and Y.-H. Seo, “High-speed computer-generated hologram based
on resource optimization for block-based parallel processing,” Appl. Opt. 57(16), 4569
(2018).

72. A. Hermerschmidt et al., “Holographic optical tweezers with real-time hologram calcula-
tion using a phase-only modulating LCOS-based SLM at 1064 nm,” Proc. SPIE 6905,
690508 (2008).

73. R. H.-Y. Chen and T. D. Wilkinson, “Computer generated hologram from point cloud using
graphics processor,” Appl. Opt. 48(36), 6841–6850 (2009).

74. H. Nakayama et al., “Real-time color electroholography using multiple graphics process-
ing units and multiple high-definition liquid-crystal display panels,” Appl. Opt. 49(31),
5993–5996 (2010).

75. S. Bianchi and R. Di Leonardo, “Real-time optical micro-manipulation using optimized
holograms generated on the GPU,” Comput. Phys. Commun. 181(8), 1444–1448 (2010).

76. P. Tsang et al., “Holographic video at 40 frames per second for 4-million object points,”
Opt. Express 19(16), 15205–15211 (2011).

77. Y. Pan, X. Xu, and X. Liang, “Fast distributed large-pixel-count hologram computation
using a GPU cluster,” Appl. Opt. 52(26), 6562–6571 (2013).

78. P. W. M. Tsang, A. S. M. Jiao, and T.-C. Poon, “Fast conversion of digital Fresnel holo-
gram to phase-only hologram based on localized error diffusion and redistribution,” Opt.
Express 22(5), 5060–5066 (2014).

79. M.-W. Kwon et al., “Object tracking mask-based NLUT on GPUs for real-time generation
of holographic videos of three-dimensional scenes,” Opt. Express 23(3), 2101–2120
(2015).

80. A. N. G. Illes et al., “Hybrid approach for fast occlusion processing in computer-generated
hologram calculation,” Appl. Opt. 55(20), 5459–5470 (2016).

81. S. Ikawa et al., “Real-time color holographic video reconstruction using multiple-graphics
processing unit cluster acceleration and three spatial light modulators,” Chin. Opt. Lett.
18(1), 010901 (2020).

82. Xilinx, “Reduce power and cost by converting from floating point to fixed point introduc-
tion,” White Paper: Floating vs Fixed Point, pp. 1–14 (2017).

83. M. D. Ciletti, Advanced Digital Design with the Verilog HDL, 2nd ed., Prentice Hall Press,
Upper Saddle River, New Jersey (2010).

Wang et al.: Hardware implementations of computer-generated holography: a review

Optical Engineering 102413-27 October 2020 • Vol. 59(10)

https://doi.org/10.1016/j.ijleo.2015.02.076
https://doi.org/10.1364/OE.17.018543
https://doi.org/10.1364/AO.53.008261
https://doi.org/10.1364/AO.54.005726
https://doi.org/10.1117/12.476879
https://doi.org/10.1364/OE.14.007636
https://doi.org/10.1364/OE.18.009955
https://doi.org/10.1364/OE.17.016038
https://doi.org/10.1364/AO.57.004569
https://doi.org/10.1117/12.764649
https://doi.org/10.1364/AO.48.006841
https://doi.org/10.1364/AO.49.005993
https://doi.org/10.1016/j.cpc.2010.04.012
https://doi.org/10.1364/OE.19.015205
https://doi.org/10.1364/AO.52.006562
https://doi.org/10.1364/OE.22.005060
https://doi.org/10.1364/OE.22.005060
https://doi.org/10.1364/OE.23.002101
https://doi.org/10.1364/AO.55.005459
https://doi.org/10.3788/COL202018.010901


84. R. Solovyev et al., “Fixed-point convolutional neural network for real-time video process-
ing in FPGA,” in IEEE Conf. Russian Young Res. Electr. and Electron. Eng., IEEE,
pp. 1605–1611 (2019).

85. T. Shimobaba and T. Ito, “An efficient computational method suitable for hardware of
computer-generated hologram with phase computation by addition,” Comput. Phys.
Commun. 138(1), 44–52 (2001).

86. T. Shimobaba, S. Hishinuma, and T. Ito, “Special-purpose computer for holography
HORN-4 with recurrence algorithm,” Comput. Phys. Commun. 148(2), 160–170 (2002).

87. Y.-H. Seo et al., “Cell-based hardware architecture for full-parallel generation algorithm of
digital holograms,” Opt. Express 19(9), 8750–8761 (2011).

88. Y.-H. Seo et al., “Hardware architecture of high-performance digital hologram generator
on the basis of a pixel-by-pixel calculation scheme,” Appl. Opt. 51(18), 4003–4012
(2012).

89. Z.-Y. Pang et al., “Hardware architecture for full analytical Fraunhofer computer-generated
holograms,” Opt. Eng. 54(9), 095101 (2015).

90. H. Kim et al., “A single-chip FPGA holographic video processor,” IEEE Trans. Ind.
Electron. 66(3), 2066–2073 (2019).

91. E. Buckley, “Real-time error diffusion for signal-to-noise ratio improvement in a holo-
graphic projection system,” IEEE/OSA J. Disp. Technol. 7(2), 70–76 (2011).

92. Y. H. Seo et al., “An architecture of a high-speed digital hologram generator based on
FPGA,” J. Syst. Archit. 56(1), 27–37 (2010).

93. T. Sugie et al., “High-performance parallel computing for next-generation holographic
imaging,” Nat. Electron. 1(4), 254–259 (2018).

94. K. Pauwels et al., “A comparison of FPGA and GPU for real-time phase-based optical flow,
stereo, and local image features,” IEEE Trans. Comput. 61(7), 999–1012 (2012).

95. Y.-H. Seo, Y.-H. Lee, and D.-W. Kim, “ASIC chipset design to generate block-based
complex holographic video,” Appl. Opt. 56(9), D52–D59 (2017).

96. T. Ito et al., “Special-purpose computer HORN-5 for a real-time electroholography,” Opt.
Express 13(6), 1923–1932 (2005).

97. Y. Abe et al., “Special purpose computer system for flow visualization using holography
technology,” Opt. Express 16(11), 7686–7692 (2008).

98. S.-I. Satake et al., “Special-purpose computer for two-dimensional FFT,” Comput. Phys.
Commun. 179(6), 404–408 (2008).

99. Y. Ichihashi et al., “One-unit system to reconstruct a 3-D movie at a video-rate via
electroholography,” Opt. Express 17(22), 19691–19697 (2009).

100. A. Shiraki et al., “HORN-6 special-purpose clustered computing system for electro-
holography,” Opt. Express 17(16), 13895–13903 (2009).

101. N. Okada et al., “Special-purpose computer HORN-7 with FPGA technology for phase
modulation type electro-holography,” in 19th Int. Disp. Workshops, Society for Information
Display, pp. 1284–1287 (2012).

102. N. Masuda et al., “Special purpose computer for phase modulation type electro-holography
with DVI output [in Japanese],” in Int. Conf. 3D Syst. and Appl., pp. 373–374 (2013).

103. Y. Yamamoto et al., “Large-scale electroholography by HORN-8 from a point-cloud model
with 400,000 points,” Opt. Express 26(26), 34259–34265 (2018).

104. T. Ito et al., “Special-purpose computer HORN-1 for reconstruction of virtual image in
three dimensions,” Comput. Phys. Commun. 82(2–3), 104–110 (1994).

105. T. Ito et al., “Special-purpose computer for holography HORN-2,” Comput. Phys.
Commun. 93(1), 13–20 (1996).

106. T. Shimobaba et al., “Special-purpose computer for holography HORN-3 with PLD tech-
nology,” Comput. Phys. Commun. 130(1), 75–82 (2000).

107. T. Nishitsuji et al., “Dedicated computer for computer holography and its future outlook,”
Proc. SPIE 10997, 109970H (2019).

108. O. Nishikawa et al., “High-speed holographic-stereogram calculation method using 2D
FFT,” Proc. SPIE 3010, 49–57 (1997).

109. R. Oi, T. Mishina, and K. Yamamoto, “Real-time IP-hologram conversion hardware based
on floating point DSPs,” Proc. SPIE 7233, 723305 (2009).

Wang et al.: Hardware implementations of computer-generated holography: a review

Optical Engineering 102413-28 October 2020 • Vol. 59(10)

https://doi.org/10.1109/EIConRus.2019.8656778
https://doi.org/10.1016/S0010-4655(01)00189-8
https://doi.org/10.1016/S0010-4655(01)00189-8
https://doi.org/10.1016/S0010-4655(02)00473-3
https://doi.org/10.1364/OE.19.008750
https://doi.org/10.1364/AO.51.004003
https://doi.org/10.1117/1.OE.54.9.095101
https://doi.org/10.1109/TIE.2018.2835424
https://doi.org/10.1109/TIE.2018.2835424
https://doi.org/10.1109/JDT.2010.2094180
https://doi.org/10.1016/j.sysarc.2009.11.001
https://doi.org/10.1038/s41928-018-0057-5
https://doi.org/10.1109/TC.2011.120
https://doi.org/10.1364/AO.56.000D52
https://doi.org/10.1364/OPEX.13.001923
https://doi.org/10.1364/OPEX.13.001923
https://doi.org/10.1364/OE.16.007686
https://doi.org/10.1016/j.cpc.2008.03.006
https://doi.org/10.1016/j.cpc.2008.03.006
https://doi.org/10.1364/OE.17.019691
https://doi.org/10.1364/OE.17.013895
https://doi.org/10.1364/OE.26.034259
https://doi.org/10.1016/0010-4655(94)90159-7
https://doi.org/10.1016/0010-4655(95)00125-5
https://doi.org/10.1016/0010-4655(95)00125-5
https://doi.org/10.1016/S0010-4655(00)00044-8
https://doi.org/10.1117/12.2522569
https://doi.org/10.1117/12.274401
https://doi.org/10.1117/12.807612


110. Texas Instruments, “Multicore fixed and floating-point digital signal processor datasheet,”
Technical Report TMS320C6678, Texas Instruments (2014).

111. Intel, “Intel Xeon Phi coprocessor,” https://www.intel.co.uk/content/www/uk/en/products/
processors/xeon-phi/xeon-phi-processors.html (2019).

112. J. Fang et al., “Test-driving Intel Xeon Phi,” in Proc. 5th ACM/SPEC Int. Conf. Perform.
Eng., ACM, pp. 137–148 (2014).

113. OpenMP Architecture Review Board, “OpenMP official website,” https://www.openmp
.org/ (2019).

114. K. Murano et al., “Fast computation of computer-generated hologram using Xeon Phi
coprocessor,” Comput. Phys. Commun. 185(10), 2742–2757 (2014).

115. N. Tanabe et al., “Speed-up of hologram generation using ClearSpeed accelerator board,”
Comput. Phys. Commun. 180(10), 1870–1873 (2009).

116. G. Kyriazis, “Heterogeneous system architecture: a technical review,” Technical Report,
AMD (2012).

117. Y. Yamamoto et al., “Special-purpose computer for electroholography in embedded sys-
tems,” OSA Continuum 2(4), 1166–1173 (2019).

118. NVidia Corporation, “Jetson TX1 module,” https://developer.nvidia.com/embedded/buy/
jetson-tx1 (2019).

119. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase
from image and diffraction plane pictures,” Optik 35, 237–246 (1972).

120. P. W. Mash and T. D. Wilkinson, “Realtime hologram generation using iterative methods,”
Proc. SPIE 6252, 62521O (2006).

121. D. Blinder et al., “Signal processing challenges for digital holographic video display sys-
tems,” Signal Process. Image Commun. 70, 114–130 (2019).

122. A. Shan, “Heterogeneous processing: a strategy for augmenting Moore’s law,” Linux J.
2006, 7 (2006).

123. ARM Ltd., “White Paper: big. LITTLE technology: the future of mobile,” Technical
Report, ARM Ltd. (2013).

124. NVidia Corporation, “Harness AI at the edge with the Jetson TX2 developer kit,” https://
developer.nvidia.com/embedded/buy/jetson-tx2-devkit (2019).

125. NVidia Corporation, “Jetson AGX Xavier developer kit,” https://developer.nvidia.com/
embedded/jetson-agx-xavier-developer-kit (2019).

126. NVidia Corporation, “Jetson NANO module,” https://www.nvidia.com/en-gb/autonomous-
machines/embedded-systems/jetson-nano/ (2019).

127. NVidia Corporation, “Jetson Xavier NX,” https://devblogs.nvidia.com/jetson-xavier-nx-
the-worlds-smallest-ai-supercomputer/ (2019).

128. ARM Ltd., “Neon architecture,” https://developer.arm.com/architectures/instruction-sets/
simd-isas/neon (2019).

129. NVidia Corporation, “NVIDIA brings CUDA to arm, enabling new path to exascale super-
computing,” https://nvidianews.nvidia.com/news/nvidia-brings-cuda-to-arm-enabling-new-
path-to-exascale-supercomputing (2019).

130. NVIDIA, “NVIDIA announces CUDA-X HPC,” https://news.developer.nvidia.com/
nvidia-announces-cuda-x-hpc/ (2019).

131. Xilinx Inc., “UG1393: vitis unified software platform documentation: application accel-
eration development,” Technical Report (2019).

132. NVIDIA, “Jetson TX2 introduction page,” https://www.nvidia.com/en-gb/autonomous-
machines/embedded-systems/jetson-tx2/ (2019).

YouchaoWang is currently pursuing his PhD in engineering from the University of Cambridge,
Cambridge, United Kingdom, where he previously received his MPhil degree. He received his
BE (Hons.) degree in electronic engineering from the University of Manchester and his BE
degree in electrical and electronic engineering from North China Electric Power University,
Beijing, China, under a joint degree program in 2018. His research interests include optical
processing, CGH hardware implementations, Internet of Things applications, and low-cost
hardware system design.

Wang et al.: Hardware implementations of computer-generated holography: a review

Optical Engineering 102413-29 October 2020 • Vol. 59(10)

https://www.intel.co.uk/content/www/uk/en/products/processors/xeon-phi/xeon-phi-processors.html
https://www.intel.co.uk/content/www/uk/en/products/processors/xeon-phi/xeon-phi-processors.html
https://www.intel.co.uk/content/www/uk/en/products/processors/xeon-phi/xeon-phi-processors.html
https://www.intel.co.uk/content/www/uk/en/products/processors/xeon-phi/xeon-phi-processors.html
https://www.intel.co.uk/content/www/uk/en/products/processors/xeon-phi/xeon-phi-processors.html
https://www.intel.co.uk/content/www/uk/en/products/processors/xeon-phi/xeon-phi-processors.html
https://www.openmp.org/
https://www.openmp.org/
https://www.openmp.org/
https://doi.org/10.1016/j.cpc.2014.06.010
https://doi.org/10.1016/j.cpc.2009.06.001
https://doi.org/10.1364/OSAC.2.001166
https://developer.nvidia.com/embedded/buy/jetson-tx1
https://developer.nvidia.com/embedded/buy/jetson-tx1
https://developer.nvidia.com/embedded/buy/jetson-tx1
https://developer.nvidia.com/embedded/buy/jetson-tx1
https://doi.org/10.1117/12.677167
https://doi.org/10.1016/j.image.2018.09.014
https://doi.org/10.5555/1119128.1119135
https://developer.nvidia.com/embedded/buy/jetson-tx2-devkit
https://developer.nvidia.com/embedded/buy/jetson-tx2-devkit
https://developer.nvidia.com/embedded/buy/jetson-tx2-devkit
https://developer.nvidia.com/embedded/buy/jetson-tx2-devkit
https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit
https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit
https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit
https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit
https://www.nvidia.com/en-gb/autonomous-machines/embedded-systems/jetson-nano/
https://www.nvidia.com/en-gb/autonomous-machines/embedded-systems/jetson-nano/
https://www.nvidia.com/en-gb/autonomous-machines/embedded-systems/jetson-nano/
https://www.nvidia.com/en-gb/autonomous-machines/embedded-systems/jetson-nano/
https://devblogs.nvidia.com/jetson-xavier-nx-the-worlds-smallest-ai-supercomputer/
https://devblogs.nvidia.com/jetson-xavier-nx-the-worlds-smallest-ai-supercomputer/
https://devblogs.nvidia.com/jetson-xavier-nx-the-worlds-smallest-ai-supercomputer/
https://devblogs.nvidia.com/jetson-xavier-nx-the-worlds-smallest-ai-supercomputer/
https://developer.arm.com/architectures/instruction-sets/simd-isas/neon
https://developer.arm.com/architectures/instruction-sets/simd-isas/neon
https://developer.arm.com/architectures/instruction-sets/simd-isas/neon
https://developer.arm.com/architectures/instruction-sets/simd-isas/neon
https://nvidianews.nvidia.com/news/nvidia-brings-cuda-to-arm-enabling-new-path-to-exascale-supercomputing
https://nvidianews.nvidia.com/news/nvidia-brings-cuda-to-arm-enabling-new-path-to-exascale-supercomputing
https://nvidianews.nvidia.com/news/nvidia-brings-cuda-to-arm-enabling-new-path-to-exascale-supercomputing
https://nvidianews.nvidia.com/news/nvidia-brings-cuda-to-arm-enabling-new-path-to-exascale-supercomputing
https://news.developer.nvidia.com/nvidia-announces-cuda-x-hpc/
https://news.developer.nvidia.com/nvidia-announces-cuda-x-hpc/
https://news.developer.nvidia.com/nvidia-announces-cuda-x-hpc/
https://news.developer.nvidia.com/nvidia-announces-cuda-x-hpc/
https://news.developer.nvidia.com/nvidia-announces-cuda-x-hpc/
https://www.nvidia.com/en-gb/autonomous-machines/embedded-systems/jetson-tx2/
https://www.nvidia.com/en-gb/autonomous-machines/embedded-systems/jetson-tx2/
https://www.nvidia.com/en-gb/autonomous-machines/embedded-systems/jetson-tx2/
https://www.nvidia.com/en-gb/autonomous-machines/embedded-systems/jetson-tx2/


Daoming Dong received his BE degree with first class in electronics from a joint program
between the University of Liverpool (UoL) and Xi’an Jiaotong Liverpool University (XJTLU)
in 2016. He then moved to Imperial College London, where he received his MSc degree with
distinction in material science and engineering in 2017. He is currently a second-year PhD stu-
dent under the supervision of Professor Tim Wilkinson in the Centre of Molecular Materials
for Photonics and Electronics (CMMPE) Group, Department of Engineering, Cambridge
University, Cambridge. His research relates to accelerate and optimize the generation process
of computer-generated hologram (CGH) via configurable hardware for the next generation 3D
holographic displays.

Peter J. Christopher originally graduated from Bristol University in 2014 with a first-class ME
degree in civil engineering, before spending 2 years working as a software/R&D engineer for
Autodesk’s Advanced Manufacturing Group focusing on additive manufacture and 3D printing.
Looking for a new challenge, he joined the CDT in ultra precision based out of the Institute
for Manufacturing at Cambridge University in 2016 and is currently working with Professor
Tim Wilkinson in the CMMPE group on high-power areal projections systems for additive
manufacturing.

Andrew Kadis originally graduated from the University of Adelaide, Australia, in 2010 with a
first-class degree in engineering and a bachelor of computer science. Before commencing his
PhD studies in 2018, he had considerable experience in the industry, working on embedded
systems in drones, medical devices, and life sciences equipment. He is currently at Cambridge
University working with Professor Tim Wilkinson in the CMMPE group.

Ralf Mouthaan obtained his MS degree in physics from the University of Nottingham in 2008
before joining the UK’s National Physical Laboratory as a microwave metrologist, where his
research was focused on maintaining and developing the UK’s electromagnetic exposure stan-
dards. More recently, he has obtained an MRes in sensor technologies from the University of
Cambridge, where he is now pursuing a PhD investigating holographic mode excitation in
optofluidic waveguides.

Fan Yang received his BE degree with first class from the University of Sydney in 2017 and
joined the CMMPE group, Department of Engineering, Cambridge University, as an MPhil stu-
dent in 2018. He is continuing his research in the CMMPE group as a PhD student under the
supervision of Professor Tim Wilkinson to develop a compatible and efficient holographic 3D
display system.

Timothy D. Wilkinson received his undergraduate degree from Canterbury University,
Riccarton, New Zealand, and his PhD from Magdalene College, Cambridge, United Kingdom,
in 1994. He is currently a professor of photonic engineering in the Department of Engineering,
Cambridge University, Cambridge, and a fellow of Jesus College. He has been working in the
field of photonics, devices, and systems for more than 20 years. His current research has been
into applications of holographic technology. This includes new liquid crystal device structures
based on sparse arrays of vertically grown multiwall carbon nanotubes, where the tubes are used
as tiny electrodes to great 3D electric field profiles and graded refractive index structures, which
may have applications, such as switchable lenslet arrays and 3D displays.

Wang et al.: Hardware implementations of computer-generated holography: a review

Optical Engineering 102413-30 October 2020 • Vol. 59(10)


