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Abstract We review the advances of terahertz (THz) science and technology in biophotonics,
including related challenges and solutions. The main impediment to THz spectroscopy and im-
aging in this field is the high absorption of the THz beam in water. Hence, transmission imaging
and spectroscopy of thick wet tissue using THz radiation has generally been quite difficult.
However, the absorption of THz waves by water molecules is so strong that increasing the power
of the THz source can lead to structural and functional changes in tissues, so solutions must go
beyond a larger power output. In terms of resolution, THz imaging is superior to ultrasound
but inferior to visible light microscopy. Owing to its unique material analysis capabilities, prom-
ising diagnosis applications have been demonstrated through THz imaging and spectroscopy.
Unfortunately, many applications are limited by beam penetration depth and resolution. Hence,
researchers from a wide variety of scientific and technical fields have been actively improving
these features through the development of electronic devices and materials. In addition, ground-
breaking optical architecture and materials to reduce beam absorption in the optics of a system
and generate focused beams with smaller diameters have been proposed. On the software side,
image processing techniques to computationally enhance the resolution and quality of THz
imaging have been proposed. Data science and machine learning to automate the diagnosis of
defects and diseases through processing THz images and spectroscopy data have been proposed.
We have reviewed the applications of THz radiation in biophotonics and research achievements
toward advancing these applications. A conclusion with a roadmap toward increasing the foot-
print of the THz technology in biophotonics is also proposed. © 2020 Society of Photo-Optical
Instrumentation Engineers (SPIE) [DOI: 10.1117/1.OE.59.6.061629]
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1 Introduction

The terahertz (THz) frequency range is located between radiofrequency and infrared—a largely
unreachable bandwidth for many decades. Conventional electronics were incapable of generat-
ing such high frequencies, while photonic devices could not emit low enough frequencies.
As such, no known wave generators could reach into this regime. Fortunately, research achieve-
ments in the late twentieth century finally broke through the THz frequency range.1 Promising
medical and industrial applications of THz technology soon followed. New systems such as THz
time-domain spectroscopy (TDS) were developed as well. THz TDS is powerful for material
spectroscopy, layer inspection, and transmission imaging of packaged objects.2 THz-TDS sys-
tems are utilized in authentication,3–5 nondestructive inspection,6–17 three-dimensional (3-D) im-
aging,18–20 quality control,21–25 airport security,26–32 art investigations,33–36 detecting damages on
wood caused by insects,37 tomography,38–43 characterization of astrophysical ice,44 biomedical
diagnosis and imaging,45–53 assessment of burn injuries,54,55 material characterization,56–62 thick-
ness measurements,63,64 aerospace application,65 detection of the dielectric function in biological
fluids,66 and holography.67,68 Although the resolution of THz spectroscopy and imaging is
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significantly higher than that of ultrasound and radiofrequency, its depth of penetration is limited
as the absorption of the beam inside materials increases exponentially with respect to the fre-
quency of the photons. Hence, increasing both the photon density and frequency of emission has
been the primary focus of researchers in the device sector. In biophotonics applications, chal-
lenges for THz imaging and spectroscopy are even more significant as molecules of water have
high absorption in the THz regime. The strong absorption of THz waves by water molecules
means that significantly more photons must be emitted to maintain respectable signal-to-noise
ratio (SNR) and depth penetration. However, increasing the power of the THz source can lead to
structural and functional changes in tissues.69 To tackle this challenge, THz measurements on
wet tissues are primarily done in reflection mode. Alternatively, thin slices of tissues or dried
tissues can be imaged in transmission mode. As compared with optical and x-ray imaging, the
resolution of THz is limited due to the low frequency of the THz photons. Considering the fre-
quency of visible light in the color red to be 428 THz and the upper limit of the commonly used
THz beam to be around 4 THz, the resolution of THz images is at least 100 times lower than that
of images captured in visible light. As mentioned earlier, THz imaging and spectroscopy have
been demonstrated to offer promising applications for industrial and medical fields. To fit this
ever-increasing range of applications, researchers from different fields have consistently worked
toward improving the resolution and photon density of the beam in THz spectroscopy and im-
aging. In this respect, research groups in the photonics and electron device sectors have proposed
several innovative device architectures and semiconductor materials. Researchers in the field of
optics have developed innovative architectures of optical setups and lenses toward achieving
high numerical aperture and low absorption. Groups in image processing and computer data
processing have developed computational techniques for improving the resolution of the
THz spectroscopy and imaging. Data scientists have developed automated software programs
for analyzing THz measurements and improving the results. These efforts and achievements are
reviewed in this paper.

This paper is organized as follows: in Sec. 2, the applications of THz in biological and bio-
medical fields and related challenges are discussed. In addition, research endeavors toward
solving these challenges are reviewed. Section 3 outlines advances in devices and materials for
generating THz radiation with higher frequencies and higher power. In Sec. 4, improvements in
THz optics and image processing are reviewed. Section 5 concludes and summarizes the main
ideas of this paper.

2 Terahertz Applications and Challenges in Biophotonics

2.1 Defining Biophotonics and Exploring Current Imaging Techniques

Biophotonics involves the study of optical processes in biological systems.70 As such, this
paper’s focus is restricted largely to imaging biological samples, analysis of organic material
transmission/reflectance characteristics, and similar applications.

The THz spectrum is not unique in its ability to perform subsurface biophotonic imagery.
Multiple techniques such as x-ray, positron emission tomography (PET) scans, magnetic reso-
nance imaging (MRI), and cytometry already fill this role. However, THz technology is the first
to do so with remarkably low cost and danger relative to these methods. Moreover, some materi-
als (notably water molecules) attenuate electromagnetic waves in the THz spectrum quite differ-
ently than at higher frequencies, giving THz imaging a unique window into spectral analysis that
is difficult to achieve using alternative imaging methods. An example of this absorption profile is
shown in Fig. 1, which shows the level of attenuation in water at various THz frequencies.

Although the degrading effect of intense THz radiation on DNA is reported,72–75 no other
detrimental effects are observed and THz is still safer than x-ray in many areas. These biomedical
applications of THz technology were not possible at its inception in the 1960s. The initial gen-
erated frequencies were not coherent enough to draw significant conclusions from received data,
and proper tools for processing the data were not yet in existence. However, the 1990s brought
about significant improvements to TDS and femtosecond lasers, which drastically improved
sensing capabilities at this frequency.76 These new tools allowed researchers to send and receive
individual wave pulses, providing spectral information in a broader frequency range and faster
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analysis than previous technology. Further developments such as nanoantenna arrays and plas-
monic sensors continue this trend and allow increasingly complex biophotonic analysis. Several
uses of THz technology are outlined below, including both past and current capabilities.

2.2 Evaluating Crop Health

As previously mentioned, water molecules dominate the absorption profile for THz waves. Early
THz technology was adept at capturing this profile due to its propensity for high SNR values. In
a scenario in which competing factors determine overall THz attenuation, the presence of water
will dwarf most other impedance factors. Since healthy plants must contain an abundance of
water in their cells to maintain rigidity, this should be clearly visible in a THz image of crops
or individual plant samples. In 1995, Hu and Nuss77 showed that visually indistinguishable leaf
samples with substantially different levels of hydration can easily be classified using this
method.77–80 Figure 2 shows this effect in a leaf 48 h after it has been cut, in which it attenuates
significantly less energy after dehydrating.77 Notably, this image is indicative of contrast levels

Fig. 2 THz images of a leaf after it is just cut and after 48 h. Lighter colors indicate less water is
present. This figure demonstrates that, even at the dawn of THz imaging, it had tremendous
potential for biological analysis. Retrieved from Ref. 77 with permission from Optics Letters.

Fig. 1 Attenuation coefficients for water across various frequencies. Note that absorption in the
THz band is uniquely higher than the surrounding regions. Bandwidths in this region offer unique
insights into the characteristics of water-saturated materials. Figure retrieved from Ref. 71 with
permission from OSA Publishing.
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attainable even in early prototypes of THz imaging technology. More recently, Born et al.81

implemented a rigorous demonstration of the same effect in 2014. By correlating the relationship
between THz transmission and plant stress in European conifers, they confirmed a strong rela-
tionship between sample thickness, harvest time, and transmission levels.81 Water content is also
an important characteristic in separating genetically modified organism crop strains from their
nonmodified counterparts. In 2016, Liu et al.82 found that THz transmission profiles were crucial
in nondestructive detection of transgenic rice seeds. On a larger scale, THz spectroscopy offers a
useful window into determining crop hydration—a major indicator of overall vitality.83–86 In one
study, Castro-Camus et al.87 assessed the feasibility of several irrigation techniques across a
variety of plant species. In contrast to alternative measurement techniques, TDS allowed them
to measure several aspects of individual and group plant health without altering the samples in
the process.87

2.3 Early Indicators of Abnormal Tissue

After the developments in THz technology in the late 1990s, applications in this bandwidth
became far more feasible. Owing to the extremely important factor that water plays in biological
material, THz imagery offers key insights into organic processes that cannot be viewed easily
using alternative methods. By the mid-2000s, researchers improved imaging techniques to view
quantitative measures of sample water content, not just its presence or absence. As a result, they
could make helpful insights into the characteristics of these samples, such as the two examples
shown below.

Fig. 3 THz and MRI images of brains (a)–(c) with and (d) without tumors. Note that THz imaging is
highly adept at locating both presence and size of tumors. Image retrieved from Ref. 88 with
permission from the Optical Society of America.
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2.3.1 Cancerous growths

At the beginning stages of many tumors, it is difficult to visually distinguish healthy tissues from
benign or malignant growths. However, cancerous cells typically house more water than their
healthy counterparts. As a result, THz imaging can provide contrast that is nearly impossible to
achieve with other imaging modalities. In 2014, Oh et al.88 demonstrated this capability in an
analysis of brain tumors. Comparing THz images with traditional MRI scanning methods, they
make evident the clearly superior contrast inherent in THz profiles. These findings are depicted
in Fig. 3, which shows that THz capabilities are more effective than MRI scans for quantitatively
analyzing brain tumors. It is worth stressing that these pictured samples did not have to be
stained or specially prepared prior to THz imaging—they were obtained in a wholly nondestruc-
tive manner.88

This is a remarkable step forward in potentially providing preventative cancer screenings
since THz imaging can be performed quickly and at a low cost.79,89–96 In-vivo (samples on living
organisms) measurements, though only effective for up to a few microns, are still effective
enough to detect epidermal defects. In one instance, Zaytsev et al. successfully used this tech-
nique to noninvasively scan participants for the presence of melanoma in skin samples.97 More
forms of in-vivo analysis are provided in later sections.

2.3.2 Osteoporosis

Developments in THz sensing have also led to higher SNR during attenuation profile analysis.
Kim et al.89 leveraged this concept in 2011 to characterize healthy versus ossified bone tissue in
the same sample. Figure 4 depicts these findings, in which THz scanning clearly denotes the
unhealthy areas. As a healthy animal ages, its old bone tissue is replaced at a specific rate over
time. Osteoporosis is a condition in which the body removes older bone tissue faster than it is

Fig. 4 Chicken bone sample. (a) Region A is normal spongy bone, region B is ossified, and region
C contains cartilage. (b) The separate regions are clearly distinguishable in the THz reconstruc-
tion. Combination of two figures retrieved from Ref. 89 with permission from the OSA.
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replaced, making the bone structure more brittle and porous over time. Unfortunately, the onset
of this disease is often too gradual to detect reliably using conventional imaging approaches.
As such, physicians rely on a combination of several metrics to evaluate the likelihood that
an individual will be diagnosed with osteoporosis.98 However, porous bone has a noticeably
different attenuation signature in the THz bandwidth compared with healthy bone in the same
specimen.89,99–102 With further developments in THz sensing, in-vivomeasurements may provide
early, quantitative indicators of bone decay and improve patient care as the disease progresses.

2.4 Measurements on Live Samples

In the early stages of THz biophotonic applications, THz profiling was almost exclusively per-
formed on excised and carefully prepared samples. However, recent advances have allowed high
enough SNR for imaging live bodies. Importantly, these scans can be performed with minimal
harm since THz radiation is nonionizing. Most applications in this regard involve identifying
water concentration levels in various tissue samples to ascertain more information about the
subject. To date, such specimens include rabbit corneal tissue,91,92,103 rabbit and rat abdominal
tissue (an example is shown in Fig. 5),104,105 and human skin.46,94,106–108 In all cases, exposure to
THz radiation for the duration of the study yielded negligible harmful side effects. Berry et al.
performed an in-depth study to ensure the safety of these scans, confirming minimal conse-
quences.109 Strides in this area also have promising applications in monitoring blood glucose
levels for diabetic patients. From 2016 to 2019, multiple research groups have shown that THz
spectroscopy scans remove the need for constant blood samples. Moreover, this method provides
constant glucose level monitoring without the need for an intravenous system—increasing both
safety and comfort for the subject.46,108,110–115

2.5 Organic Chemical Bond Analysis

As mentioned in the introduction to this section, many techniques used for imaging organic
processes require the object to be identified and stained prior to the imaging procedure.
This step is particularly inconvenient when working with very small-scale samples, such as
DNA.116 Fortunately, some organic bonds (such as the double-helix structure of DNA) have
resonance patterns lying in the THz frequency region. As such, certain photonic excitations
of these molecules allow THz waves to radiate from the sample for analysis in much the same
way as the reflected wave from THz illumination. Similar procedures can be carried out on RNA,
some proteins, and other polypeptide bonds.79,117–119 Moreover, these measurements can be per-
formed orders of magnitude faster than previous data collection techniques.120

Fig. 5 Left: In-vivo setup for imaging a rat abdomen. The imaged area was branded and imaged at
multiple timestamps. Right: THz images at (a) start, (b) 10 min, (c) 1 h, and (d) 7 h after branding
the specimen. THz analysis provides sufficient information to reliably quantify the seriousness of
such an injury. Figures retrieved from Ref. 105 with permission from SPIE.
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2.5.1 DNA/RNA

The idea of using THz to analyze DNA structure has existed since the early 1990s.121,122

Advantages to this technique include the lack of required staining and low-energy photons that
do not require ionizing of molecules. As such, researchers could image cells for a longer period
with fewer adverse effects compared with conventional techniques.75,116,123,124 While it may not
possess the resolution capabilities of the alternative methods, THz analysis is certainly sufficient
for multiple forms of DNA characterization.79,118,119,125,126 In contrast, one of the most effective
alternative methods for analyzing DNA’s helical bond involved fluorescence microscopy, a tech-
nique that stains subject molecules to give them enough contrast for viewing under an optical
microscope. However, this damages the cells being imaged; as such, the sample cannot be used
for long-term study.127 X-ray imaging can also be used to study these samples but incurs dam-
aging penalties as well due to its ionizing radiation, and it still requires the samples to be stained
beforehand. Hence, further developments in THz spectroscopy are ideal for long-term studies of
a single cell’s nucleic acid.

2.5.2 Protein interactions and amino acids

THz-bandwidth vibrational modes are also quite informative at describing protein interactions.
Previously, one of the best means of analyzing protein–molecule membrane interactions
involved surface-phonon resonance and sample labeling.128 However, it required rather large
interacting molecules and a lengthy sampling duration to achieve analytical results. THz imaging
decreases both requirements, allowing researchers to see interactions at even smaller molecule
sizes with rapid sampling durations.129–137 One such example is depicted in Fig. 6, where THz
imaging achieved the same accuracy as fluorine labeling for detecting the presence of strepta-
vidin protein bonding.

Once again utilizing the spectral analysis features of THz imaging, amino acids can be char-
acterized in new and insightful manners through their transmission/reflectance profiles over a
range of frequencies. This has led to more accurate descriptions of amino acid and polypeptide
lattice structures and further verification of theoretical results.96,108,129,138–141

2.6 Developments in Optical Coherence Tomography

THz optical coherence tomography (OCT) leverages a combination of Michaelson interferom-
etry with low-coherence THz beams to infer sample depth information. The basic setup behind
this principle is illustrated in Fig. 7. During OCT imaging, photons from the source pass through
a beam splitter to both the sample and a reference mirror. Information from both of these paths

Fig. 6 Experiment showing THz profiling is as accurate as fluorine labeling in detecting protein
bonding. (a) Grid layout of protein samples on a membrane slide. (b) Fluorine-labeled image. Dark
spots indicate that a form of protein bonding to the membrane has occurred. (c) THz image of
the same slide. As in (b), dark spots indicate the occurrence of bonding. Importantly, (c) can
be obtained without staining the samples. Retrieved from Ref. 128 with permission from OSA
Publishing.
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are combined in the processing stage, where constructive and destructive interferences yield
valuable information about the sample’s depth and composition characteristics.142

OCT is well suited for biological applications since its emission source is nonionizing. As
such, it is safe to use for even extended durations on biological material. In effect, this imaging
technique allows for the subsurface, volumetric capabilities of x-ray wavelengths without the
same biological consequences.

Though OCT is available in a wide variety of smaller wavelengths, THz OCT in particular is
well suited for biophotonic analysis. Unlike traditional shorter-wavelength OCT, THz wave-
lengths are less prone to scattering and allow significantly higher sample depth penetration.144

It is also quite versatile, allowing for use in both time-domain (TD) and Fourier-domain (FD)
imaging modes.

During TD OCT, the beamsplitting mirror must be mechanically moved over time. This
movement causes changes in the interference pattern that coincide with different sample depths.
In this manner, measurements at multiple sample depths can be performed.145 In FD OCT
(also known as swept-source OCT), the source sweeps through several THz wavelengths as the
system characterizes the changes in interferometry. This newer development in THz OCT
requires a smaller apparatus, offers higher resolution, and decreases acquisition time.146

Multiple independent THz sources can produce necessary power and spectral bandwidths
for OCT imaging. Lee et al. proved that quantum cascade lasers (QCLs) were capable of this
achievement in 2011, while Isogawa et al. showed in 2012 that uni-traveling-carrier photodiode
modules were also successful sources.147,148 In both cases, submillimeter depth resolution was
provided on samples that scale well to biological analogs. Importantly, in each case, researchers
corroborated OCT results with standard two-dimensional (2-D) THz imaging, ensuring that the
results were accurate within an expected margin.

Implementations by Nagatsuma et al. proved sufficient for gathering depth information
largely independent of the imaged medium. Especially relevant to biophotonic imaging, they
successfully collected information about specimen water levels in their experimental setup.149

Recent publications such as Fitzgerald et al.’s study showed that THz OCT results can be
combined with traditional THz-TDS measurements to infer unique sample properties. Moreover,
this same method generated thickness estimates in two different forms, allowing confirmation
checks for each measurement, as depicted in Fig. 8.150

In addition, efforts by Kitahara et al. showed that FD THz OCT complements traditional TD
OCT. Signal processing advances in the field allowed them to provide reliable tomographic
measurements despite substantial noise levels in their broadband THz source.151

In conclusion, the appropriate groundwork has been laid for efficient, robust, high-resolution
THz OCT. Existing in-vivo applications for THz OCT allow for the imaging of skin and other
external regions.152 However, the ∼10- to 150-μm-depth limitation currently prohibits its use in
larger or deeper biomedical samples.

Fig. 7 Basic setup for interferometric imaging. THz OCT uses beams in the THz wavelength.
A source beam passes through a splitter, which sends half of the energy to the sample and half
to a mirror (reflective element). Retransmission from both the sample and mirror is picked up at the
camera, where an interference pattern emerges. Retrieved from Ref. 143 with permission from
OSA Publishing.
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3 Advances in Terahertz Devices and Materials

3.1 Advances in Terms of Terahertz Devices

In 1976, the first published THz image was generated using a THz gas laser with an emission
frequency of 300 GHz.153 Common methods of 1 to 5 THz bandwidth radiation involved rec-
tifying the oscillations of the femtosecond lasers using a nonlinear crystal. In such a way, a pulse
wave with a central frequency in the optical band and spectral width in the THz range can be
downconverted into a pulse of THz radiation.154 As mentioned in Sec. 1, the resolution of THz
imaging is limited due to the low frequency of THz radiation as compared with the frequency of
photons in visible light and x-ray. As the frequency of the radiation in the THz range increases,
the absorption of photons in the material increases exponentially. In brief, for increasing the
probability of detecting a higher number of high-frequency THz photons by a THz detector,
the number of emitted high-frequency THz photons from the THz emitter, the sensitivity, and
the frequency band of the detector need to increase. Hence, the main focus of research has been
developing THz emitting devices capable of emitting THz radiation with higher photon densities
and at the same time capable of emitting THz photons in higher frequency bands, together with
developing THz sensors with higher detection frequency and higher sensitivities.

As mentioned, the THz beam has been traditionally generated through extracting the
envelope of the oscillations in the femtosecond laser beam using a nonlinear crystal.155 As nano-
technology advances, the tendency has been shifting toward photoconductive THz emitters and
detectors.156 In 1995, Hu and Nuss reported the first transmission of a THz image developed
through optoelectronic THz TDS using photoconductive antennas.77 As shown in Fig. 9, the
function of photoconductive antennas in generating THz radiation is similar to that of nonlinear
crystals.156

As shown in Fig. 10, photoconductive antennas of the emitter and detectors are made of metal
electrodes fabricated on a photon-absorbing semiconductor substrate created for operating in the
THz frequency range.157,158 First, a femtosecond laser pulse pumps the emitter side photocon-
ductive antenna. A bias voltage is applied to this antenna to drift the photogenerated carriers in
the substrate active channel. As a result of this drift, an ultrafast photocurrent is induced between
the two metallic arms of the antenna. The full width at half maximum (FWHM) of this

Fig. 8 The overlay of an OCT-acquired image on top of a THz scan visually confirms the similarity
between these methods. Retrieved from Ref. 150 with permission from OSA.
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photocurrent is in the subpicosecond range. This photocurrent contains a frequency bandwidth in
the THz range. This photocurrent drives the antenna, and as a result one pulse of electromagnetic
radiation with the duration of subpicosecond, or the equivalent frequency range of a few THz, is
emitted. As shown in Fig. 9, a beam splitter and an optical delay line are utilized to pump the
detector antenna upon arrival of the THz pulse. When the active region absorbs a THz electro-
magnetic pulse, an electric field is induced. This electric field drifts the carriers between the
electrodes of the antenna. In other words, a photocurrent pulse with a frequency range in the
THz region is generated. As illustrated in Fig. 9, a lock-in amplifier, which is usually a propor-
tional–integral–derivative controller, ensures that the rate of sensing repetition or frequency of
sensing is locked on the repetition rate of the THz pulse and a computer is used for recording and
displaying the pulse.156 For operation in continuous-wave (CW) mode, a heterodyned dual-
frequency optical beam with a frequency difference in the range of THz is used.157

Fig. 10 Operation principle of photoconductive THz antenna. Reproduced with permission.156

Copyright 2018, SPIE.

Fig. 9 Diagram of a THz TDS system, including photoconductive antennas, optical delay line,
femtosecond laser, locked-in amplifier, and the computer. Reproduced with permission.156

Copyright 2018, SPIE.
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To enhance the intensity of the emitted THz signal, the amount of the photogenerated carriers
needs to increase. Similarly, to enhance the sensitivity of the THz detectors, the amount of the
photogenerated carriers in the detector antenna needs to increase. To enhance the quantum effi-
ciency of the THz photoconductive antenna, and hence the photon density of the THz beam,
innovative architectures to improve the design of the photoconductive antennas were proposed
and fabricated.157,159 In the following sections, some of these devices are reviewed.

3.1.1 Novel terahertz photoconductive antennas with higher photon efficiency

In 2012, Park et al.160 demonstrated that implanting nanorods into the active channel of a photo-
conductive antenna contributes to the increased concentration of the pumping femtosecond laser
illumination inside the active region. The higher the number of the pumping photons reflected on
the active region is, the higher the number of absorbed photons is, resulting in a larger amount of
photocarrier generation and finally a larger number of emitted THz photons. In a similar pro-
cedure, the mentioned nanorods contribute to reflecting on the active region more photons of the
received THz beam at the THz detector and contribute to enhancing the sensitivity of the
detecting THz photoconductive antenna.161–164 Figure 11 illustrates the structure and scanning
electron microscopy (SEM) images of photoconductive THz antennas based on nanorods.160

In another effort for improving the design of the THz photoconductive antennas, contact
electrodes were proposed to decrease the path between the two electrodes of the photoconductive
antenna.166,167 In this way, the carriers pass through a shorter distance in the active region of the
substrate between the two electrodes. Hence, the transit distance and the time of the carriers in
the active region is shorter and, as a result, the percentage of the carriers that successfully pass
through the active region without going through recombination is increased. Consequently, the
number of emitted THz photons is higher. In summary, adding plasmonic contact electrodes to
the photoconductive THz antennas leads to THz devices with higher resolution and depth
of penetration.168–170 Such a design was first proposed by Berry and Jarrahi167 in 2010. As
illustrated in Fig. 12, the advanced structure of this plasmonic THz device contains large area
photoconductive nanoantenna arrays. Since larger areas are available to be pumped by the femto-
second lasers, higher power and beam spot can be used without harmful carriers screening or
thermal effects.170–173 A radiation power of 3.8 mW over the 0.1- to 5-THz range of frequency

Fig. 11 (a) Photoconductive THz antennas with nanorods as light concentrators. Figure retrieved
from Ref. 160 with permission from OSA Publishing. (b) SEM image of fabricated device, including
the 20-μm dipole on SI-GaAs substrate (top SEM image), the active area of the hexagonal
plasmonic array (middle SEM image), and the active area of the strip plasmonic array (lower
SEM image). The diagram shows apex angle θ, gap size d , and periodicity p. Retrieved from
Ref. 165 with permission from OSA Publishing.
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was demonstrated through this architecture.174 As of 2017, the best signal to noise ratio achieved
for THz TDS using this architecture was reported to be 107 dB over the 0.1- to 4-THz range of
frequency.175

In 2019, a multinational research consortium from the United States, Russia, and Japan
reported that current–voltage measurements under femtosecond laser illumination show an
increase of the transient photocurrent of 15 times higher than that of conventional photocon-
ductive antennas. In terms of THz power spectra, a 100 times increase of the THz power is
observed in the reported results as well.176

Figure 13 illustrates a design for a THz photoconductive antenna with a channel that includes
nanocavities and distributed Bragg reflectors (DBRs).177 Both nanocavities and DBRs contribute
to the enhancement in the percentage of absorbed photons by the active region of the THz photo-
conductive antenna. As illustrated in Fig. 13, the DBR is fabricated under the active channel of
the antenna and reflects back to the active region the photons with a frequency that is within the
photonic stopband. To increase the number of absorbed THz photons on the detector side, the
DBR is designed to have a stopband in the range of the wavelength of the incident THz photons.
On top of the DBR, a gold nanoantenna array is fabricated. As a result of this architecture, the
incident photons within the stopband of DBR are trapped (reflected back and forth) in the active
region until they are absorbed and thus contribute to the photocurrent. Of course, some portions
of the photons escape the trap or are absorbed by parts of the device where they cannot contribute
to the photocurrent. Nonetheless, a significant portion of the trapped photons is absorbed in the
active region. Hence, this architecture enhances the photo-efficiency of the system significantly.
Accordingly, 4 mW over 01- to 5-THz frequency range was reported as the power of the THz
radiation through this architecture. This radiation power is 20 times higher than a similarly large
area plasmonic LT-GaAs THz emitter without optical nanocavities and DBR.177–179

In another research work, an improved design for THz photoconductive antennas was
proposed; it features a deep trench in the substrate between electrical pads and a closed-loop
junction, which reduces the parasitic capacitance and series resistance, respectively. Based on
this modeling approach, a parametric study is carried out to investigate the relationship between
the physical parameters of the diode and parasitic elements, which limit the device cutoff
frequency.180

Fig. 12 A photoconductive antenna with contact electrodes for decreasing the path between the
two electrodes and SEM image of the fabricated device. Figure retrieved from Ref. 180 with per-
mission from AIP.
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In addition to the abovementioned designs for enhancing the photon density and frequency
of THz radiation, innovative designs for shaping the spectrum of the THz radiation through
frequency-dependent impedance modulation have also been proposed.181,182 Such designs are
implemented by altering the electrodes of the photoconductive THz antennas, as outlined in
Fig. 14.

In terms of characterization methods of THz photoconductive antennas, Topalli et al.183 pre-
sented an indirect impedance characterization method for planar THz antennas monolithically
integrated with electronic sensor devices. This method is based on coplanar contact-probe mea-
surements taken at an accessible location (e.g., a readout pad), which provides crucial exper-
imental data to verify the impedance seen by the integrated device.

3.2 Advances in Terms of Materials

Large bandgap semiconductor materials have proven to be promising semiconductor materials
for achieving THz devices with higher photon frequencies and emission powers. Among these
materials, GaN and GaAs have been the most favorable materials. The first use of GaN for THz
application was reported in 1997 in an AIGaN/GaN THz radiation sensor heterostructure field-
effect transistor (HFET).184 The bandgap energy, saturation velocity, and thermal conductivity of
GaN are all more than twice that of GaAs. As a result, GaN devices offer higher output power
and operation frequency compared with other conventional III to V devices. The mentioned
characteristics of GaN together with its capabilities of providing high 2-D electron densities
and high longitudinal-optical (LO) phonon of ∼90 meV make it one of the most promising
semiconductors for the future of generation, detection, mixing, and frequency multiplication
of electromagnetic waves in the THz frequency regime.185 Researchers have proposed and fab-
ricated several innovative GaN-based THz devices, such as GaN-based plasma THz
HFETs,184,186–188 negative differential resistance diode oscillators,189–191 heterodimensional
Schottky diodes,192,193 impact avalanche transit-time diodes,194,195 planar Gunn diode,196

antenna-coupled field-effect transistors,196–201 THz power radiators based on the Volterra–Wiener

Fig. 13 Optical nanocavities and DBR. The SEM images left to right illustrate gold antenna array,
the active region of the THz detector showing two metallic electrodes and the nanoantenna array
in the PC gap; a 2-μm square input aperture in the gold screen of the near-field THz probe. Figure
retrieved from Ref. 177 with permission from the American Chemical Society.
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theory of nonlinear systems with frequencies,202 high electron mobility transistors,203–205 and
QCLs.206–219 GaN-based devices can fundamentally improve the resolution by enabling THz
imaging systems with frequencies higher than 5 THz through enhancing the photon intensity.
For instance, GaN-based QCLs can operate in the 5- to 12-THz range213 whereas operation of
conventional naturally cooled GaAs-based QCLs in the upper THz frequency band is limited by
a LO phonon of 36 meV.220

Table 1 provides the numerical values of the characteristics of GaN and GaAs. The bandgap
energy, Eg, saturation velocity, and thermal conductivity of GaN are all more than twice that of
GaAs. As a result, GaN devices offer higher output power and operation frequency compared
with other conventional III–V devices.221–224

Fig. 14 (a) Schematic of the photoconductive antenna design for modulating THz radiation and
(b) a microscopic image of the antenna’s arms with its gap. Figure retrieved from Ref. 182 with
permission from AIP.

Table 1 Comparison between GaN and GaAs and material critical frequencies of operation.
Updated and reprinted from Ref. 185, with permission of SPIE.

Bandgap
energy (Eg )

Critical
field (ECR )

Saturation
velocity (VSAT)

Thermal
conductivity

GaN ✓ 3.4 (eV) 2 (MV/cm) 2 × 107 ðcm∕sÞ 1.3 (W/cm)

GaAs 1.4 (eV) 0.4 (MV/cm) 1 × 107 ðcm∕sÞ 0.5 (W/cm)

Material Si (300 K) Si (77 K) GaAs (300 K) GaAs (77 K) GaN (300 K) GaN (77 K)

ωcr (THz) 1.7 0.46 ✗ 3.5 0.093 ✗ 10 ✓ 1.6 ✓
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The fundamental plasma frequency is given as

EQ-TARGET;temp:intralink-;e001;116;723ω0 ¼
πs
2L

; (1)

where L is the length of the channel and s is the speed of propagation. In a field-effect transistor,
eigenmodes of the plasma oscillations are odd harmonics of the fundamental plasma frequency.
Thus, for HFET to operate in plasma mode, the length of the channel needs to be limited by
the following condition.

EQ-TARGET;temp:intralink-;e002;116;636L ≪ Lcr ¼
sμm
r

; (2)

where μ is mobility in low field and m is the effective mass of the electron. This condition is
satisfied when

EQ-TARGET;temp:intralink-;e003;116;573ω0τ ≫ 1; (3)

where τ is the momentum relaxation time. Consequently, the frequency of operation, ωcr, needs
to be much higher for HFET to work in plasma mode:

EQ-TARGET;temp:intralink-;e004;116;518ωcr ¼
1

τ
: (4)

As indicated in Table 1, ωcr is in the THz regime for GaN for the entire temperature of the
operation range.225

As illustrated in Fig. 15, plasmonic GaN-based HFETs and QCLs have capabilities of oper-
ating in the upper THz frequency band of 5 to 12 THz, at room temperature, and with relatively
high emission powers.219,226–228 According to the studies by the research group of Paiella and
Moustakas at Boston University (Fig. 15), the population inversion and consequently the gain
coefficient of the GaN/AlGaN quantum wells (QWs) dependence on the temperature are three
times smaller than that of GaAs/AlGaAs for THz emission. Moreover, the gain coefficient of
the nitride device remains large enough for laser action even without cryogenic cooling.214–216

As a result, GaN-based devices can operate in the upper THz frequency of 5 to 10 THz at
room temperature, which is inaccessible by GaAs-based devices.213 In 2003, pioneering works
reported THz emission from InGaN/GaN multiple QWs.217,218 In 2015, THz QCLs were
fabricated via radiofrequency molecular beam epitaxy and a metal–organic chemical vapor dep-
osition (MOCVD) on MOCVD-growth AlGaN/AlN templates grown on c-plane sapphire sub-
strates. The number of active regions and wave functions, contributing to lasing, were limited to
be two QWs and three sub-band levels, respectively. As a result, lasing at ∼5.5 and ∼7.0 THz

was achieved, which was the highest reported emissions for THz QCLs in 2015.208,213,219

In 2016, researchers from Boston University reported photocurrent peaks near 10 THz for
THz intersubband photodetectors, which are developed based on GaN/AlGaN QWs grown on
a free-standing semipolar GaN substrate.211 The photocurrent spectrum and conduction-band
lineup of the semipolar GaN/AlGaN QW infrared photodetector developed by this research
group are shown in Fig. 15(e). In the latter work, the selective injection into the upper lasing
level and a wide dynamic range of operating current density are realized to achieve a higher
operating temperature of the THz QCL. The highest reported operation temperature for
GaAs/AlGaAs is 160 K for a 1.9-THz QCL and 150 K for a 3.8-THz QCL, whereas GaN-based
QCLs can work at room temperature.229–231 AlGaN/GaN QWs were also proposed for absorption
of THz radiation.232 Reduction in Al mole fraction causes the QW width to increase; thus inter-
subbands transitions in these QWs are adjustable to be between 1.0 and 10 μm.209 For absorption
in the THz frequency range, plasma-assisted molecular beam epitaxy with tunable absorption
from 53 to 160 μm (with respect to doping level and geometrical variations) was reported.210

A new method for generating THz radiation by exposure to femtosecond laser pulses on the
semiconductor surface based on the transverse Dember cross effect was proposed in Refs. 233
and 234.
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4 Advances in Terahertz Optics, Image Processing, and Data Science

4.1 Terahertz Optics

Super resolution can be achieved in near-field THz imaging.235 However, in near-field imaging
systems, objects must be placed at a subwavelength distance from the aperture. Thus, transmis-
sion imaging of objects that are thicker than roughly a 100 μm is not possible in near-field THz
imaging.21,236,237 As a result, in most of the applications, near-field THz imaging cannot replace
far-field THz imaging. For this reason, a tremendous amount of research is dedicated to the

Fig. 15 Conduction-band profile and squared envelope functions of (a) the GaAs/Al0.
15Ga0.85As, (b) the GaN/Al0.15Ga0.85N, and (c) the ZnO/Mg0.15Zn0.85O QC gain media con-
sidered in this study. (d) Calculated fractional population inversion of the THz QC structures of
(a) (dash-dot line), (b) (solid line), and (c) (dashed line), as a function of temperature.
Reprinted from Ref. 214, with permission of AIP. (e) Photocurrent spectrum measured at 10 K
under an applied voltage of 1.2 V. Reprinted from Ref. 211 with permission of AIP.
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enhancement of far-field THz imaging. In addition to digital image reconstruction tech-
niques,238–240 high-resolution THz imaging based on utilizing aperture synthesis,241 dielectric
cube terajet generation,242–246 solid immersion imaging,247–250 confocal THz laser microscope,251

and wide-aperture spherical lens252,253 for 3-D and flat diffractive optics254,255 were proposed.
Minins et al. demonstrated that a mesoscale dielectric cube can be exploited as a resolution

enhancer by placing it at the focused imaging point of a CW THz imaging system. Using the
enhancer at 125 GHz in the THz imaging system, they successfully obtained a diffraction-limited
FWHM corresponding to 275 GHz, a 2.2 times higher frequency, without changing the design of
the imaging system.256,257 In 2018 and 2019, researchers from A.M. Prokhorov General Physics
Institute demonstrated a 0.15λ resolution of the proposed imaging modality at λ ¼ 500 μm,
which is beyond the Abbe diffraction limit and represents a considerable improvement over the
previously reported arrangements of solid immersion imaging setups. The proposed technique
does not involve any subwavelength near-field probes and diaphragms; thus, it avoids the THz
beam attenuation due to such elements.247,258 The mentioned work has been demonstrated to be
promising for microscopy of soft biological tissues.259 The schematic of the THz solid immer-
sion microscope for CW reflection-mode imaging of soft tissues is illustrated in Fig. 16.

4.2 Digital Image Processing and Data Science

Image reconstruction techniques improve the resultant images of the optics-based resolution-
enhancement techniques even further, and thus developments in both areas need to be pursued
in parallel. In addition, since THz imaging is fairly a new science, theories and mathematical
models for describing the THz imaging systems are not matured yet. Advancing the research and
development in THz optics and image reconstruction cannot be done efficiently without well-
developed cohesive models and theories.

Stantchev et al.21 proposed a near-field THz imaging of hidden objects using a single-pixel
detector. However, as mentioned in the previous section, the drawback of near-field imaging is
the fact that objects thicker than a few hundred micrometers cannot be imaged. Trofimov et al.
realized conventional image processing techniques to increase the quality of THz imaging
systems.239,260 Kulya et al. proposed taking material dispersion into account to enhance the qual-
ity of THz images.261 For suppressing the absorption in the physical lenses, diffraction lenses
with low absorptions were proposed.262–265 Ahi et al. developed a mathematical algorithm to
incorporate the THz imaging features into the Gaussian beam theory to model the THz point
spread function and demerge the subresolution features through deconvolution.8,266,267 Signal
processing and suppression of diffraction through filtering out the delayed beams have also
proved significant enhancements in THz images.268 A software system for automation of the
implementation of the high-resolution THz imaging theory of Ref. 268 was also proposed.269

The user interface of this system is shown in Fig. 17. Kannegulla and Cheng proposed

Fig. 16 Schematic of the THz solid immersion microscope for CW reflection-mode imaging of soft
tissues. Reprinted from Ref. 247 with permission of AIP.
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subwavelength focusing using hyperbolic metamaterials for enhancement of the THz imaging
systems.270 As illustrated in Fig. 18, the resolution of THz imaging can be enhanced through the
reconstruction of the image in THz pulse time-domain holography.271 Such research can be clas-
sified as a numerical approach for increasing the resolution of retrieved images of objects after
their diffraction patterns are recorded via THz pulse time-domain holography.

Data postprocessing methods in this field open up the possibility of reconstructing holograms
recorded with spatially restricted THz detectors and overcoming the diffraction limit even for the

Fig. 17 User interface of an automation software program for implementation of the computational
image resolution enhancement theory reported in Ref. 268. The sample is a packaged IC.

Fig. 18 Resolution enhancement through broadband THz pulse time-domain holography.
Reprinted from Ref. 271 with permission of Nature Publication.
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lower-frequency spectral components.272 In addition to resolution enhancement, a combination
of temporal and complex-domain filters allows for expansion of the dynamic range of THz
frequencies. This means that amplitude/phase information as a result of utilizing holography273

can also be obtained. As the speed of measurement and size of data are becoming more of a
critical factor in the successful industrialization of any new technology, comprehensive sampling
is attracting more attention.274 In this respect, research shows that THz imaging can benefit from
comprehensive sampling without significant loss in the useful data.275,276

4.3 Automation of Terahertz Imaging and Inspection

As new applications for THz imaging and inspection are being proposed, the automation of these
applications through software programs and robotics becomes more appealing. Biological and
medical applications are certainly among the fields in which automation can contribute to the
expansion of the THz footprint. In this respect, a robotic THz imaging system for subsurface
analysis of ancient human remains was proposed, as shown in Fig. 19.277,278 The advantage of
this system over the conventional computed tomography scan is that THz provides higher depth
resolution and is noninvasive.277

5 Conclusion and Future Roadmap

THz analysis has progressed by leaps and bounds since the inception of practical wave gener-
ation in the 1990s. The first systems were capable of qualitative biophotonic analysis, mostly
focused on detecting the presence or absence of water in a sample. However, once higher power
output and greater efficiency were achieved, THz analyzers could exploit TDS and frequency
analysis to uniquely characterize material profiles. As a result, a drastic number of biomedical
applications developed, including imaging opaque samples, performing crop analyses, locating
malformed or anomalous tissue samples, identifying defective bone samples, and chemical
analysis.

As noted, these functions would not be possible without developments in the generation and
capturing of THz frequency waves. Photoconductive antennas greatly increased the number of
THz-frequency photons transferring out of the emitter, and the dual nature of this structure also
increased the efficiency when operating as a receiver. Multiple parameters affect the operation of
these antennas, and they can be tuned to the needs and capabilities of individual researchers.
Simultaneous developments were also required in the semiconductor side of photon emission.
After all, higher power outputs require more robust hardware to withstand the increased number
of incident photons. GaN and GaAs substrates prove promising in this regard. Though these
appeared as early as the 1990s, only recent developments in transistors, oscillators, and lasers
could fully utilize the capabilities of these unique materials.

Fig. 19 (a) Overview of the robotic-based THz system and (b) photo of the THz sensor head,
including a sketch of the THz beam path. Reprinted from Ref. 277 with permission of Nature
Publication.

Ahi et al.: Survey of terahertz photonics and biophotonics

Optical Engineering 061629-19 June 2020 • Vol. 59(6)



Unfortunately, these newly reached THz boundaries are ahead of their image and optical
processing counterparts. While some applications are certainly possible with current technology,
researchers are still looking into methods of improving far-field imaging techniques and over-
coming inherent resolution limitations. These advances arrive by way of innovative devices and
mathematical implementations. Such developments include alternative lenses, aperture synthe-
sis, dielectric focusing material, unique point spread beam models, and holographic reconstruc-
tion, among others. Combined, these updates in THz technology allow for unprecedented
analysis in terms of speed and complexity.
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