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Abstract. Hyperspectral (HS) imaging retrieves information from data obtained across broad-
band spectral channels. Information to retrieve is a 3D cube, where two coordinates are spatial
and the third one is spectral. This cube is complex-valued with varying amplitude and phase. We
consider shearography optical setup, in which two phase-shifted broadband copies of the object
projections are interfering at a sensor. Registered observations are intensities summarized over
spectral channels. For phase reconstruction, the variational setting of the phase retrieval problem
is used to derive the iterative algorithm, which includes the original proximity spectral analysis
operator and the sparsity modeling of the complex-valued object 3D cube. We resolve the HS
phase retrieval problem without random phase coding of wavefronts typical for the most conven-
tional phase retrieval techniques. We show the performance of the algorithm for object phase and
thickness imaging in simulation and experimental tests. © The Authors. Published by SPIE under a
Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or
in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.OE.60.1
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1 Introduction

Hyperspectral (HS) imaging retrieves information from data collected across hundreds to thou-
sands of spectral channels. Conventionally, these data are two-dimensional (2D) images stacked
together in 3D cubes, where the first two coordinates are spatial ðx; yÞ and the third one is the
spectral channel, which is usually represented by a wavelength λ.

Over the last few years, HS coherent diffractive imaging (HSCDI) shows a strong progress,
for instance, in high-resolution microscopy. Interference between reference and object wave-
fronts registered as intensity diffraction patterns is used conventionally in spectrally resolved
interferometry,1,2 Fourier transform holography,3,4 and HS digital holography.2,5,6 Along with
the traditional intensity imaging, HSCDI provides phase imaging, which brings additional infor-
mation about an object under investigation, e.g., label-free multispectral refractive index
estimation.7

In this paper, we consider a class of HSCDI in a shearography optical setup,8 where two
coherent beams, the main (basic) and its time-delay copy, go through a transparent object
simultaneously. Thus two identical but phase-shifted broadband patterns of the object are super-
imposed on the sensor. This scenario, typical for Fourier-transform spectrometry,9 leads to the
phase loss problem, where a complex-valued 3D object should be reconstructed from indirect
intensity observations as solutions of the ill-posed inverse problem. It results in serious ampli-
fication of measurement and processing noise. In addition, the high spectral resolution separates
the energy obtained by an imaging sensor between many narrow wavebands, which results in
small values of signal-to-noise ratio (SNR).
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HS phase retrieval in the shear geometry has not been studied broadly. We have found only
two papers dedicated to such a problem.10,11 Kalenkov10 realized phase retrieval by special opti-
cal system design, in which they produce spatial zero-order filtering of one beam and thanks to it
the phase reconstruction comes down to a conventional HS holographic technique of direct
phase reconstruction by Fourier transform. Reference 11 is our first solution to the HS phase
retrieval problem in the lensless self-reference HS setup. There we perform phase reconstruction
by a subsequent forward–backward propagation of HS cube slices by analogy to classical multi-
wavelength phase retrieval,12 with the hypothesis that the object wavefronts produced by neigh-
boring wavelengths are similar. We used this hypothesis for producing phase recalculation from
one wavelength to the subsequent one.

In this paper, we propagate HS cube slices all together, without phase recalculation from one
slice to another, as it is in Ref. 11. Such processing frees our method from the adjacent slice
similarity hypothesis and by that extends the field of operation for objects with a sharp spectral
response, where the subsequent slices might be unique.

The contribution of this paper can be summarized as follows. We formalize the HS phase
retrieval as a variational optimization problem for noisy Gaussian observations. One of the key
components of the derived iterative algorithm is an original proximal operator enabling both the
spectral analysis of intensity observations and their denoising. Another important component of
the algorithm is the original complex domain filtering of 3D complex-valued object arrays
following from the proposed sparsity modeling for complex-valued 3D arrays. It is demonstrated
by simulation experiments and processing of experimental data that the HS phase retrieval in the
proposed setup can be resolved.

We have published the preliminary results about the proposed algorithm in the conference
proceeding.13 In this paper, we present more stimulation and as well as experimental results with
detailed discussion.

2 Problem Formulation

LetUoðx; y; kÞ ∈ Cn×m be a 2D slice of the complex-valued 3D HS cube with spatial coordinates
ðx; yÞ, a spectral component k, andQKðx; yÞ ¼ fU0ðx; y; kÞ; k ∈ Kg,QK ∈ Cn×m×lK , be the total
spectral cube composed of lK spectral 2D slices. The size of the cube is n ×m × lK .

The lines ofQKðx; yÞ contain lK spectral observations corresponding to the coordinate ðx; yÞ.
This is a HS model of the object U0.

The squared magnitude (intensity) of observations may be written as

EQ-TARGET;temp:intralink-;e001;116;320Yt ¼
X
k∈K

jUt;kj2; Ut;k ¼ At;kUo;k; t ∈ T: (1)

Here we use vector representations for the slices U0ðx; y; kÞ, Uo;k ∈ CN , N ¼ nm, and At;k ∈
CM×N are linear operators of image formation modeling the propagation of 2D object wavefronts
from the object plane to the sensor plane.

Thus Ut;k ¼ At;kUo;k ∈ CM are the complex-valued signals, which intensities are registered
by the sensor as Yt ∈ RMþ . The summation on k in Eq. (1) says that the measurements are inten-
sities calculated over the entire spectral components. The squared absolute value j · j2 in Eq. (1)
is element-wise for components of the vectors Ut;k. For the additive noise case, the intensity
observations become

EQ-TARGET;temp:intralink-;e002;116;176Zt ¼ Yt þ εt; t ∈ T; (2)

where εt stays for a Gaussian noise ∼ N ð0; σÞ.
The HS phase retrieval is formulated as a reconstruction of the HS object cubeQKðx; yÞ from

the intensity observations Yt or Zt, t ∈ T.
A dependence of the objectUoðx; y; kÞ on the spectral k is a specific feature of the considered

phase retrieval setup as compared with the phase retrieval for a monochromatic object Uo with
observations Zt ¼ jAtUoj2 þ εt, or with the recent multispectral phase retrieval14 from

Katkovnik, Shevkunov, and Egiazarian: Hyperspectral phase retrieval: spectral–spatial data processing. . .

Optical Engineering 013108-2 January 2021 • Vol. 60(1)



observations Yt ¼
P

k∈KjAt;kUoj2, where the object Uo is again invariant in the spectral domain
and only the propagation operator is varying on k.

In this paper, we restrict a class of operators At;k to the form appeared in Fourier transform
spectrometry15 with the intensities Yt in the form:

EQ-TARGET;temp:intralink-;e003;116;686Yt ¼
X
k∈K

jð1þ e−j2πktÞAkUo;kj2; (3)

EQ-TARGET;temp:intralink-;e004;116;631At;k ¼ ð1þ e−j2πktÞAk; t ∈ T: (4)

Due to this At;k, two identical but phase-shifted copies of the object wavefrontUo;k are super-
imposed on the sensor plane: main AkUo;k and phase-shifted e−j2πktAkUo;k.

3 Algorithm Development

3.1 Approach

We assume the following for sampling on t and k in the above observation model,
K ¼ 0;1; : : : ; N∕2 − 1, T ¼ 0;1; : : : ; N − 1, then

EQ-TARGET;temp:intralink-;e005;116;503Yt ¼ 2
X
k∈K

�
1þ cos

�
2π

N
kt

��
jBkj2; t ∈ T; (5)

where Bk ¼ AkUo;k, N is a number of observations and the integer discrete frequency k covers
the low-frequency interval f0;1; : : : ; N∕2 − 1g.

The restriction of this frequency interval to length N∕2 follows from the periodicity on t of
the observation function Eq. (5). Provided that jBkj2 ¼ 0 for k ¼ N∕2; : : : ; N − 1, the observa-
tions fYtg uniquely define the intensity spectrum jBkj2 ∈ K (see Ref. 16).

Let us replace the noisy observations Zt by the differences ΔZt ¼ Zt − 1
N

P
N−1
t¼0 Zt. For large

N, the noise level in the mean value 1
N

P
N−1
t¼0 Zt is of the order smaller than that in Zt, and we can

assume that

EQ-TARGET;temp:intralink-;e006;116;354ΔZt ¼ Zt −
1

N

XN−1

t¼0

Yt ¼ 2
XN∕2−1

k¼1

cos

�
2π

N
kt

�
jBkj2 þ εt; (6)

since 1
N

P
N−1
t¼0 cosð2πN ktÞ ¼ δk;0, where δk;0 is the Kronecker symbol.

Then the criterion proposed for the algorithm design can be given in the form:
EQ-TARGET;temp:intralink-;e007;116;277

J ¼ 1

σ2
XN−1

t¼0

����ΔZt − 2
XN∕2−1

k¼1

jBkj2 cos

�
2π

N
kt

�����
2

2

þ 1

γ

XN∕2−1

k¼1

kBk − AkUo;kk22

þ fregðfUo;kgN∕2−1
1 Þ: (7)

The first summand stays for the minus log-likelihood provided a Gaussian noise. The second
summand J in the criterion is penalizing the difference between Bk and AkUo;k with the weight
1∕γ, γ > 0. The last third item is a penalty using the sparsity hypothesis on the cube of the object

images fUo;kgN∕2−1
1 . The object reconstruction is obtained by minimizing J on fUo;kgN∕2−1

1 . The
wavefronts at the sensor plane Bk serve as splitting variables in this optimization, separating the
observations from the object images.

Note that the zero-order DC term of the object Uo;0 is dropped from the consideration of
Eq. (7) as we are interested only in higher-order components of the spectrum.

The developed algorithm iteratesminfBkg J on Bk provided given fUo;kgN∕2−1
1 andminfUo;kg J

provided given fBkg. Minimization on Bk concerns the two first summands in Eq. (7). We show
that this minimization is implemented by the derived proximity operator explicitly separating the

Katkovnik, Shevkunov, and Egiazarian: Hyperspectral phase retrieval: spectral–spatial data processing. . .

Optical Engineering 013108-3 January 2021 • Vol. 60(1)



spectral wavefronts Bk at the sensor plane. Minimization on Uo;k concerns the last two
summands in Eq. (7). In this paper, we prefer to do not to formalize the penalty function

fregðfUo;kgN∕2−1
1 Þ but to use the special high-quality complex domain filter. This approach

is in line with the recent tendency in inverse imaging to use high-quality filters instead of reg-
ularizers formally obtained by solving optimization problems.

3.2 Minimization on Bl

For minimizationminfBlg J, we solve the equations ∂J∕∂B
�
l ¼ 0, l ¼ 1; : : : ; N∕2 − 1, what leads

to the set of the complex-valued equations for Bl:

EQ-TARGET;temp:intralink-;e008;116;609

�
−4
σ2

XN−1

t¼0

ΔZt cos

�
2π

N
lt

�
þ 4N

σ2
jBlj2 þ

1

γ

�
Bl ¼

1

γ
AlUo;l: (8)

Derivation of Eq. (8) can be seen in Appendix A. Inserting Bl ¼ jBljejφBl in Eq. (8), we may
conclude that

EQ-TARGET;temp:intralink-;e009;116;533φBl
¼ φAlUo;l

; (9)

where φAlUo;l
is the phase of AlUo;l.

This result follows from Eq. (8) because the expression in square brackets is real valued.
Further, the magnitude jBlj is defined as a non-negative solution of the polynomial equation,
cubic with respect to jBlj:

EQ-TARGET;temp:intralink-;e010;116;451

�
−4
σ2

XN−1

t¼0

ΔZt cos

�
2π

N
lt

�
þ 4 N

σ2
jBlj2 þ

1

γ

�
jBlj −

1

γ
jAlUo;lj ¼ 0: (10)

There is no second power in this equation and the free term is negative, then there is only one
positive solution jBlj,17 which is computed by Cardano’s formula.

The calculations in Eqs. (8)–(10) are produced in the pixel-wise manner for each pixel
separately: the amplitudes for Bl are given by Eq. (10) and the phases by Eq. (9).

This solution of minfBlg J can be interpreted as the proximity operator14,18 with a compact
notation:

EQ-TARGET;temp:intralink-;e011;116;327Bl ¼ proxfγðAlUo;lÞ; l ¼ 1; : : : ; N∕2 − 1; (11)

where γ > 0 is a parameter of the quadratic item in Eq. (7) and f stays for the minus log-

likelihood part of the criterion Eq. (7), f ≜ 1
σ2
P

N−1
t¼0 kΔZt − 2

PN∕2−1
k¼1 jBkj2 cosð2πN ktÞk2

2
.

The proximity solution fBlg resolves two problems. First, complex domain spectral com-
ponents Bl are extracted from the intensity observations. Thus we yield the spectral analysis of
the observed total intensities. Second, the noisy observations are filtered with the power
controlled by the parameter γ compromising the noisy observations Zt and the power of the
predicted signal AlUo;l at the sensor plane.

The calculation of the cosine transform in Eqs. (8) and (10) can be produced using FFT
(Proposition 2 in Ref. 16). In MATLAB notation, it looks as follows:

EQ-TARGET;temp:intralink-;e012;116;183

1

N

XN−1

t¼0

ΔZt cos

�
2π

N
kt

�
¼ real½ifft2ðΔZt∈TÞ�; for k ¼ 1;2; : : : ; N∕2 − 1; (12)

where ΔZt∈T is a sequence ΔZt, t ¼ 0; : : : ; N − 1 and ifft2 stays for the 2D inverse FFT.
This equation is valid for the nonsymmetric sampling interval t ∈ T ¼ f0;1; : : : ; N − 1g. For

the symmetric T ¼ f−N∕2;−N∕2þ 1; : : : ; N∕2 − 1g, the formula with FFT is different
(Proposition 4 in Ref. 16):
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EQ-TARGET;temp:intralink-;e013;116;735

1

N

XN∕2−1

t¼−N∕2
ΔZt cos

�
2π

N
kt

�
¼ realfifft2½fftshiftðΔZt∈TÞ�g; for k ¼ 1;2; : : : ; N∕2 − 1; (13)

where “fftshift” denotes the MATLAB shift operator in frequency domain. This symmetric sam-
pling is often used in applications. In the noiseless scenario, Eqs. (12) and (13) give precise
values of jBkj2, the intensity spectrum of observations.

3.3 Regularization by Sparsity-Based Filters

Let Uoðx; y; kÞ be a transfer function of a transparent thin object. The phase of this object can be
written in the form:19

EQ-TARGET;temp:intralink-;e014;116;594φUo
ðx; y; λÞ ¼ 2π

λ
hðx; yÞðnλ − 1Þ; (14)

where hðx; yÞ is the object thickness invariant on wavelength λ, and the phase of φUo
is smooth

with respect to wavelength λ in the denominator of this equation for a visual interval of wave-
lengths. The refractive index nλ is a slowly varying function of wavelength for many materials.
Thus the phase of φUo

as defined by Eq. (14) is a slowly varying function of wavelength and the
object slices Uoðx; y; kÞ ¼ bUo

ðx; yÞ expðjφUo
Þ close to each other for nearby wavelengths. Here

bUo
is an amplitude of the slice.
This simple example, being of a general nature, allows to assume that on many occasions the

object slices Uoðx; y; kÞ are slowly varying functions of wavelength, which means that these
slices are similar for nearby k. Then the spectral lines of Qkðx; yÞ live in lk-dimensional sub-
spaces with lk ≪ lK . Therefore, the concept of sparsity in the spectral domain can be applied for
the modeling of this phenomenon.

In this paper, we exploit the spectral sparsity hypothesis in the special filter designed for joint
filtering of spectral slices of the complex-valued object cube. This filter is used as a regularizer of
the inverse problem instead of formalizing the last regularization item in the criterion J.

This approach is in-line with the recent progress in computational imaging where efficient
plug-and-play filters have been recognized as powerful tools for prior and regularization to
resolve inverse imaging problems.20,21

The following algorithm is exploited for the joint sparsity-based processing of 3D HS cubes:

EQ-TARGET;temp:intralink-;e015;116;333fÛo;k; k ∈ Kg ¼ CCFfUo;k; k ∈ Kg: (15)

Complex domain cube filter (CCF) processes 3D cube data fUo;k; k ∈ Kg jointly and pro-

vides 3D estimates fÛo;k; k ∈ Kg for all k ∈ K. The CCF algorithm starts from the singular
value decomposition (SVD) analysis of the HS cube. As a next step, preliminary estimates
of complex-valued signal and noise correlation matrices are used to select a small-sized subset
(eigenimages) of the SVD eigenvectors that best approximate the signal subspace in the least
square error sense. Further, 2D complex domain filtering is applied to the denoising of this small
number of eigenimages. The complex domain block-matching 3D algorithm22,23 is used for this
filtering of eigenimages. Finally, the filtered eigenimages are used to reconstruct the estimates
for the entire 3D cube, i.e., for k ∈ K. Overall, CCF can be classified as the adaptive SVD algo-
rithm with optimal selection of a small number of eigenimages.

This CCF algorithm is a complex domain modification of the fast algorithms developed for
real-valued HS observations in Refs. 24 and 25. The modification of this algorithm for complex
domain HS data is produced recently in Refs. 26 and 27. A sliding window version of CCF was
developed for objects with discontinuous and fast varying spectral characteristics.27

3.4 HS Phase Retrieval Algorithm

Table 1 presents a block scheme of the developed algorithm. The calculation of the initial spec-

tral guess Uð0Þ
o;k uses the complex-valued 2D object model with the wavelength-varying phase
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according to Eq. (14) obtained from an uniform initial guess for hðx; yÞ. Stage 1 is the forward
propagation from the object plane to the sensor plane according to the operator Ak. In stage 2, the
proximity operator produces the spectral analysis of the intensity observations and provides the

updated version of the wavefront at the sensor plane defined as BðsÞ
k . In stage 3, the backward

propagation from the sensor plane to the object plane gives the update for the object spectral

image UðsÞ
o;k. In stage 4, the CCF algorithm produces the joint filtering of the object spectral

estimates using optimal SVD eigenimages and updates the object cube estimate as Uðsþ1Þ
o;k .

These iterations are repeated maxiter times.
The backward propagation operator A#

k at stage 3 is an inverse operator for the forward propa-
gation Ak.

The observation noise is filtered at stage 2 by the proximity operator, whereas the noisy
components in the object reconstructions are filtered by CCF.

3.5 On Interpretation of Hyperspectral Complex Domain Data

Intensity HS imaging in remote sensing technology mainly works with reflected signals and
enables a lot of applications requiring fine identification of materials and physical parameters.
HS complex domain sensing is of different nature and of different interpretations. Let us discuss
this issue assuming that the specimen of interest is thin and transparent. The proposed and dis-
cussed algorithm estimates both the amplitude and phase of the specimen and both estimates are
spectral. The amplitude gives information on specimen transparency and material density. This
data can be interpreted in a manner similar to that used for HS intensity data.

The reconstructed (measured, imaged) phase, in general, differs essentially from Eq. (14)
as this object phase is replaced by the corresponding wrapped phase wrap½φUo

ðx; y; λÞ�,
where wrapðφÞ ¼ modðφþ pi; 2piÞ − pi is the operator wrapping the phase φ to the interval
½−π; πÞ.

In what follows, we assume that the phase φUo
ðx; y; λÞ belongs to the basic phase interval

½−π; πÞ, then the phase measurements are indeed equal to the object phase. This assumption
simplifies the discussion. The reconstructed HS phase φUo

ðx; y; λÞ according to Eq. (14) defines
a product of two specimen parameters: thickness h and refractive index nλ:

EQ-TARGET;temp:intralink-;e016;116;101φUo
ðx; y; λÞ λ

2π
¼ hðx; yÞðnλ − 1Þ: (16)

Table 1 HS phase retrieval algorithm.

Initialization: U ð0Þ
o;k , k ∈ K ;

Main iterations: For s ¼ 1;2; : : : ;maxiter do

1. Forward propagation:

U ðsÞ
t ;k ¼ AkU

ðsÞ
o;k , k ∈ K ;

2. Proximity operation:

BðsÞ
k ¼ proxf γ ½U ðsÞ

t ;k �, k ∈ K ;

3. Backward propagation:

UðsÞ
o;k ¼ A#

kB
ðsÞ
k , k ∈ K ;

4. Spectral filtering by CCF:

fU ðsþ1Þ
o;k ; k ∈ Kg ¼ CCFfU ðsÞ

o;k ; k ∈ Kg;

Output:

Uðmaxiterþ1Þ
o;k , k ∈ K .
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Calculating in Eq. (16) the averages of spatial variables ðx; yÞ and spectral λ, we may separate
estimates of thickness and refractive index in the following way:

EQ-TARGET;temp:intralink-;e017;116;711

meanλ

�
φUo

ðx; y; λÞ λ

2π

�
¼ hðx; yÞcn;

meanðx;yÞ

�
φUo

ðx; y; λÞ λ

2π

�
¼ nλch; (17)

where cn ¼ meanλðnλ − 1Þ and ch ¼ meanh½hðx; yÞ� are the constants.
These equations give estimates for variations of hðx; yÞ and nλ within invariant factors cn, ch.

These reconstructions can be useful for many applications, e.g., for phase plate calibration to find
variations in a surface and in the optical properties of materials.

If hðx; yÞ or nλ are given, the estimates for hðx; yÞ and nλ, respectively, take the form:

EQ-TARGET;temp:intralink-;e018;116;578

hðx; yÞ ¼ 1

2π
meanλ½φUo

ðx; y; λÞλ∕ðnλ − 1Þ�;

nλ − 1 ¼ 1

2π
meanðx;yÞ½φUo

ðx; y; λÞλ∕hðx; yÞ�: (18)

A much more complex case occurs when we need to measure the refractive index varying
spatially. Then φUo

ðx; y; λÞ ¼ 2π
λ hðx; yÞ½nλðx; yÞ − 1�, and for estimation of refractive index

nλðx; yÞ we need measurements or extra information on object thickness.
Provided a fixed specimen thickness, we have a refractive index estimate in the explicit

form nλðx; yÞ ¼ 1þ 1
2π φUo

ðx; y; λÞλ∕hðx; yÞ.
If the thickness is slowly varying on ðx; yÞ, then the windowed on spatial coordinates HS

phase estimates can be used to image fast variations in nλðx; yÞ.
All estimates discussed in this section are implemented as a postprocessing of HS cube phase

φUo
ðx; y; λÞ obtained by the proposed algorithm.
If the variations of the object’s phase go beyond the basic interval ½−π; πÞ, the wrapping effect

becomes essential and the above equations for the thickness and refractive index do not work.
The phase unwrapping28 is one instrument to resolve the problem, otherwise, a proper interpre-
tation of phase imaging, even visual, without attempts to separate thickness and refractive index,
may become problematic. As far as we may conclude from publications, modern phase imaging,
at least in biomedicine, is restricted to phase imaging in the basic interval ½−π; πÞ.29

4 Results

Simulation and experimental studies of the algorithm performance have been produced for vari-
ous system parameters and various objects to be reconstructed. Some of these results are shown
and discussed in what follows.

4.1 Simulation Tests

We model a transparent phase specimen assuming an invariant amplitude and phase defined by
Eq. (14), where hðx; yÞ is varying according to the USAF test image [see Figs. 1(a) and 1(b)].
The refractive index nλ is calculated for each λ according to Cauchy’s equation 30 with coef-
ficients taken for the glass BK7.31 As an illumination source, we model a broadband light beam
in the range of Λ ¼ ½450∶900� nm with a uniform intensity distribution. The number of wave-
lengths is 250. The light beam goes through the specimen and after freely propagates to the
sensor where the intensity observations are registered as a 3D cube Ytðx; yÞ of length
N ¼ 2000, which corresponds to N steps of the phase-shift modulation Eq. (5). We implement
this modulation according to the simulated motion of the phase delay stage of the Fourier spec-
trometer. Each step of this simulated motion was equal to 100 nm to resolve the smallest wave-
lengths of the spectral range of the light beam.15 The wavelength-dependent image formation
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operator Ak is calculated according to the angular spectrum propagation technique.19 A distance
from the specimen to the sensor was equal to 10 mm and the camera pixel size was 3.45 μm.

The proximity HS analysis is produced for 250 wavelengths. However, we use only 50 of
these wavelengths (range [680:820] nm) corresponding to the forthcoming physical experiments,
where only spectra of higher signal-to-noise ratio are exploited for phase retrieval processing.
Noisy observations are created according to Eq. (2).

The registered noisy observation cube Ztðx; yÞ is demonstrated in Fig. 1(c) and a single-pixel
intensity distribution along t coordinate is presented in Fig. 1(d). We reconstruct a thickness
map of the object for 50 wavelengths and the results are presented as HS cube 64 × 64 × 50.
The accuracy of the reconstruction is characterized by the relative-root-mean-square error
(RRMSE) criterion calculated for each wavelength:

EQ-TARGET;temp:intralink-;e019;116;432RRMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kĥest − htruek22

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
khtruek22

p ; (19)

where ĥest and htrue are the reconstructed and true thickness maps, respectively. RRMSE values
<0.1 correspond to visually high-quality 2D imaging.

We perform experiments with an additive Gaussian noise of different σ to test the algorithm’s
robustness to noise. The noise level with respect to the spectral signals at the sensor plane is
characterized by the peak-signal-to-noise ratio (PSNR) calculated as

EQ-TARGET;temp:intralink-;e020;116;315PSNR ¼ 10 log10

�
maxx;y;kðjBkjÞ

σ

�
; (20)

where maxx;y;kðjBkjÞ is the maximum of the intensity spectra at the sensor plane.
The estimates of the object thickness obtained from the phases of the entire HS cube accord-

ing to Eq. (18) are presented in Fig. 2 as 2D and 3D images. A nearly perfect correspondence of
these estimates to the true thickness images in Fig. 1 is clear. In these tests: iteration number

Fig. 2 Reconstruction of the object thickness obtained by the HS phase retrieval, iteration
number s ¼ 30, (a), (b) HSPR, PSNR ¼ 29.8 dB, RRMSE ¼ 0.031, σ ¼ 0 and (c), (d) HSPR,
PSNR ¼ 12.2 dB, RRMSE ¼ 0.11, σ ¼ 15.

Fig. 1 The true thickness of the transparent phase object: (a) 2D and (b) 3D images; (c) 3D noisy
intensity observations: diffractive data cube Z t , t ∈ T ; and (d) the intensity distribution for the cen-
tral pixel of the 3D data cube Z t as a function of the experiment number t (slice number in the data
cube).
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s ¼ 30, σ ¼ 0, and σ ¼ 15. The low values of RRMSEs prove the high-accuracy performance of
the algorithm achieved for a small number of iterations.

Let us compare two ways of thickness reconstruction: from the phase estimate obtained for a
single wavelength and from the reconstructed entire complex-valued cube where the data for all
wavelengths are used simultaneously. In the first case, the thickness is calculated by Eq. (16) and,
in the second case, according to Eq. (18).

A red dashed curve in Fig. 3(a), the low-noise case (PSNR ¼ 29.8 dB) is obtained for sep-
arate estimates of thickness from single-wavelength phase estimates. The minimum value of
RRMSE is achieved near the middle point of the wavelength interval. The solid-black curve
shows RRMSE achieved by the estimate obtained for thickness of the entire reconstructed phase
cube. Naturally, this RRMSE value is invariant on wavelength. Note that this RRMSE value is
quite near to the smallest value achieved by the red-dashed curve.

The curves in Fig. 3(b) are obtained for much noisier observations (PSNR ¼ 12.2 dB). The
reconstruction by Eq. (18) (solid-black line) is wavelength invariant and shows higher RRMSE
as compared with the corresponding curve in Fig. 3(a). A red-dashed curve is varying with a lot
of up and down peaks. This behavior of the estimates differs from what we had in Fig. 3(a). We
may conclude that for the noisier data, the separate thickness estimates are very noisy and unsta-
ble with wavelength. At the same time, the estimate based on the joint use of all wavelength
estimates gives the results that can be treated as much better than those for most wavelengths. As
we do not know in advance the best wavelength for thickness estimation, the estimate [Eq. (18)]
guarantees the high accuracy for thickness reconstruction for both noisy and noiseless cases.

The fast convergence rate of the algorithm is demonstrated in Fig. 4 showing RRMSE as a
function of iteration number s for different noise levels and different wavelengths. Figure 4(a)

Fig. 3 RRMSE curves for reconstructed thicknesses from observations: (a) σ ¼ 0 (PSNR ¼
29.8 dB) and (b) σ ¼ 15 (PSNR ¼ 12.2 dB). Dash red curves are for reconstructed objects’ thick-
ness from separate wavelengths and solid black curves are for reconstructed objects’ thickness
averaged along the whole range of wavelengths.

Fig. 4 RRMSE maps for the reconstructions in different noise conditions. (a) Map of RRMSE
values averaged over λ as function of iteration number s and PSNR and (b) RRMSE for
each λ depending on iteration number s for the case of PSNR ¼ 12.2 dB.
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presents RRMSE values averaged over λ for the entire HS cube depending on the given noise
level, measured by PSNR, Eq. (20). Figure 4(b) shows the RRMSE values for PSNR ¼ 12.2 dB

and for each wavelength. These images prove that the algorithm is robust to noise and provides
eligible low RRMSE values even for very noisy observations of PSNR ¼ 12.2 dB. Due to the
spectral uniformity of the modeled illumination source and the joint HS cube processing with
CCF, RRMSEs for different wavelengths achieve similar values. For both RRMSE maps, the
dark blue regions correspond to high-quality reconstructions.

4.2 Physical Tests

For experimental validation, we consider a biological specimen, a fly wing that has both ampli-
tude and phase-varying features. The experimental data were obtained by the lensless optical
system implementing the principles of Fourier spectrometry with a supercontinuum laser source
Λ ¼ ½650∶900� nm and a piezo-driven stage in the delay line.11 The optical setup is presented in
Fig. 5(a), where the interferometric scheme is realized. Figure 5(b) shows the spectrum of the
laser source registered by the commercial spectrometer (Thorlabs CCS200), dashed blue curve,
and reconstructed by a Fourier transform, solid orange curve. For the commercial spectrometer
curve, we applied the quantum efficiency of the camera. These two curves are in close agreement
with each other.

We recorded lK ¼ 1880 observations Ztðx; yÞ with the phase-delaying step of 59.7 nm.
The total distance of the delay line defines the spectral resolution of the wavenumber as
Δk ¼ 44.6 cm−1. Due to the non-uniformity of the laser spectrum, the object reconstruction
is performed for only 50 wavelengths with relatively high-intensity spectra in the range
Λ ¼ ½681∶802� nm. The results of the amplitude and phase reconstruction for slice λ ¼ 736 nm

are shown in Fig. 6. It is clearly seen that both amplitude and phase features are well distinguish-
able in the provided images. The wrapped phase regions appear in the phase image (sharp black
lines), however, they do not corrupt the reconstructions since the algorithm CCF provides filter-
ing for complex-domain wavefronts, where no distinction exists between absolute and wrapped
phases. The HS cube of phase/amplitude reconstruction for each slice (wavelength) is presented
in Video 1.

For demonstration of the spatial differences in the spectral responses of the specimen, we
show phase and amplitude spectra obtained for three different points of the specimen [see
Figs. 7(a) and 7(b)]. Each of the spectral curves corresponds to one of the numbered colored
points in the amplitude image [Fig. 7(c)] with the same corresponding colors.

Fig. 5 (a) HS phase retrieval setup. BS1 and BS2 are beamsplitters, M1 to M4 are mirrors, “O” is a
transparent specimen, “Cam” is a registering sensor, “B” is a light blocker, and “Delay” is a moving
delay stage. (b) Used light spectrum: a blue-dashed curve is a spectrum registered by a spec-
trometer and multiplied by the camera quantum efficiency. An orange solid curve is a spectrum
reconstructed by our algorithm.
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The point “1” is located out of the specimen area and, therefore, the amplitude spectrum in
Fig. 7(a) represents the laser spectrum multiplied on the registration camera quantum efficiency.
The corresponding phase spectrum curve in Fig. 7(b) is nearly invariant on wavelength.

The points “2” and “3” belong to the specimen and reflect different spectrum absorbance and
disturbances in different areas of the wing. These spatial variations in phase and amplitude
cannot be interpreted unambiguously as variations in both thickness and refractive index can
cause them.

The black circle curve in Fig. 7(b) is a difference of the phase curves for points “2” and “3.” It
is growing approximately linearly with a growing wavelength. If we assume that the wavelength-
dependent refractive index is the same for these two points, such a behavior of this curve indi-
cates that the object in point 2 is thinner than in point 3. In this way, sometimes the ambiguity of
thickness/refractive index can be overcome.

Fig. 7 (a) Amplitude and (b) phase spectra for different points of the object. The curves in the left
and middle plots correspond to the points numbered in (c) the amplitude image, λ ¼ 745 nm with
the same colors. Black circles curve in plot (b) is a phase difference between curves from points 2
and 3.

Fig. 6 The amplitude and phase reconstructions corresponding to the λ ¼ 736 nm slice of the 3D
cube. The amplitudes and phases for the entire reconstructed HS cube can be seen in Video 1
(Video 1, MP4, 1.193 MB [URL: https://doi.org/10.1117/1.OE.60.1.013108.1]).
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For the experiments, we used MATLAB R2020a on a computer with 32 GB of RAM and
1.9 GHz Intel® Core™ i7-08665U CPU. A single iteration for HS cube with dimensions
1500 × 1500 × 50 took around 150 s.

5 Conclusion

An HS phase retrieval algorithm has been developed and presented, which allows the recon-
struction of the complex amplitude of a transparent specimen in the lensless optical setup based
on Fourier spectrometry principles in a shearographic geometry. This self-referencing lensless
system enables a large field of view and robustness of the results with respect to vibration. A
specimen phase lost in intensity measurements is reconstructed by the developed iterative algo-
rithm utilizing HS complex domain sparsity of wavefronts. The advantage of HS data processing
compared to the results available for monochromatic experiments is demonstrated. With the
growing interest in HS measurements, we expect that the developed algorithm finds applications
in various bio- and medical tasks concerning noninvasive quantitative phase imaging.

6 Appendix A: Minimization on Bl

For minimization minfBlg J, we calculate the derivative ∂J∕∂B�
l and solve the equation

∂J∕∂B�
l ¼ 0 what leads to the complex valued solution of the form Bl ¼ jBljejφBl .

The following manipulations define the derivatives ∂J∕∂B�
l , l ¼ 1;2; : : : ; N∕2 − 1:
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It is used in the second line of these equations that
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δk;l; for k; l ¼ 1; : : : ; N∕2 − 1;

where δk;l is the Kronecker’s symbol, δk;l ¼ 1 for k ¼ l and otherwise δk;l ¼ 0.
It follows from the third line in Eq. (22) that the complex-valued Bl is a solution of Eq. (8).
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