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Abstract. We propose a miniature anamorphic lens design that records wide-screen videos on
an ordinary CMOS format. The front group consists of two freeform lenses, which achieve dif-
ferent focal lengths in the two orthogonal directions and thus enable the anamorphic character-
istics. The rear group is made of rotationally symmetric aspheric elements that relay the image on
the sensor. The annularly stitched extreme-point-based polynomial surface description is pro-
posed to control the extreme point position and the air clearance between elements in the opti-
mization process. An optimization method based on surface upgrade and conversion is adopted
in the design. The design result offers an anamorphic ratio of 1.33 and an f-number (f∕#) of ∼2,
with a field of view of 65.3 deg× 35 deg. The overall length of the lens is 9.5 mm, which shows
an advantage for integration into pocket devices. © The Authors. Published by SPIE under a Creative
Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part
requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.OE.60.6.065104]
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1 Introduction

Anamorphic lenses, which have different magnifications in the X and Y directions, are widely
used in cinematography to optically record a wide-screen picture on a regular sensor. For exam-
ple, such a lens with an anamorphic ratio of 1.33 is able to image a 2:1 format scene on a 3:2
format sensor without loss of effective pixels. Apart from the advantage of full pixel usage to
obtain a wider scene, the anamorphic lens shows some unique optical properties favored by the
users, such as the artistic horizontal flare caused by bright objects in a scene or the elliptically
shaped out-of-focus bokeh. Although first invented for film cinematography, this type of lens
design has experienced an expansion from the beginning of this century.1–7 Lens manufacturers,
such as Zeiss AG, Konica Minolta, and Canon Corp., published relevant patents,1–4 and some of
them have been made into professional movie lenses.

Anamorphic characteristics can be achieved in several ways. In some applications, anamor-
phic characteristics are obtained from the off-axis effect by inserting prisms or off-axis reflective
mirrors.8–10 But the most common way to obtain an anamorphic ratio in lens systems is to use
optical elements with different optical powers in the X and Y directions, e.g., inserting cylindrical
lenses or toroidal lenses into imaging systems. Many efforts have been devoted to exploring the
structures of anamorphic lenses of this kind, resulting in three basic types: the front anamorphic
attachment type, the middle anamorphic attachment type, and the rear anamorphic attachment
type.1–7,11–16 Among the three types, the front anamorphic attachment type brings the least aber-
ration and is the conventionally preferred type in fixed-focal systems.11,12 Yuan and Sasián12,13

studied aberration properties for anamorphic lenses using cylindrical or toroidal elements and
proposed a set of aberrations formulas, fDig, for the design process. Zhang et al.14 studied
the thin lens aberration properties for anamorphic lenses and put forward a paraxial lens design
method, and they also studied the condition when the anamorphic ratio is related to object
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distance and derived the formula to obtain a constant ratio in thin lens approximation.15 Different
structures of anamorphic lenses using double curvature elements were widely analyzed and dis-
cussed by Dodoc16 in 2019. Most recently, a big data technique was utilized to explore the fea-
sible solution space for anamorphic lenses. Lippman et al.17 generated 1 billion lens models
using Monte Carlo searching and studied the first-order solutions for anamorphic zoom lenses.
Though the above contributions provide us with powerful tools for the design and analysis of
anamorphic lenses, they mainly focus on conventional photographic lenses composed of mostly
spherical elements with very few cylindrical, toroid, or aspheric ones. And because of the extra
aberrations introduced by double curvature elements and the constraints brought with the ana-
morphic ratio, such anamorphic photographic lenses have complicated structures and a long total
thickness, which makes them unsuitable for integration into pocket devices.

With the development of lens fabrication technologies, aspherical and freeform elements are
now widely used in various kinds of lens systems to reduce the number of elements and obtain a
more compact form. Various mathematical expressions for aspheric optical surfaces have been
published: Zernike polynomials,Q-type polynomials, and annularly stitched aspheres.18–20 Each
surface expression offers unique benefits in the design process and is thus more favorable in
certain kinds of designs. Zernike polynomials a have close relationship with aberration coeffi-
cients, which helps to design or analyze optical systems.18 Q-type polynomials are derived from
the surface departure slope from the best-fit sphere, and designers can evaluate the surface tol-
erance or manufacturability based on the coefficients.19 Aspheres can be annularly stitched to
provide more flexibility in optimization, and their ability is shown in ultra-thin annularly folded
systems and disk reading objectives.20 When a non-symmetrical surface shape is needed, free-
form optics has shown terrific ability for aberration correction in compact off-axis systems21–26

and is reported to achieve special optical properties when adopted in coaxial systems.27,28 Due to
the non-rotationally symmetrical surface shape, freeform elements can serve as the double cur-
vature elements to achieve different focal lengths in the X and Y directions in an anamorphic lens
and provide an extra degree of freedom to balance aberrations as compared with cylindrical or
toroid ones.

In this paper, we propose a design of a miniature anamorphic lens with a total length within
10 mm. Two freeform elements are adopted to realize the anamorphic characteristics, and
a 5-element aspheric rear group transfers the image onto the sensor. In Sec. 2, we describe the
overall system specifications and design strategy of our design. To effectively manipulate the
shape of wild aspheric elements in the rear group, a special surface expression is derived and
utilized. Section 3 shows the performance of the design result. The trade-off between distortion
and imaging quality for the design result is discussed, and design results with different surface
types are compared in Sec. 4. Finally, the conclusions are drawn in Sec. 5.

2 Design Strategy

In this paper, we aim to design a miniature anamorphic lens with the help of freeform and
aspheric elements. The specifications for the lens are listed in Table 1. The lens to be designed
has a standard focal length that is equivalent to 50 mm of a full frame camera, but its actual focal
length is much smaller by adopting a 1/3″ CMOS sensor. A typical 1/3″ CMOS sensor has a 4:3
format with the working area of 4.8 mm × 3.6 mm, while in our design, a 3:2 format area on the
CMOS is used so that a 2:1 wide-screen effect can be obtained with the 1.33 anamorphic ratio.

Figure 1 illustrates the thin lens approximation for the system. The front group consists of
two bicurvature (i.e., freeform) elements, L1 and L2, while the rear group, Lr, is identical in the X
and Y directions. For the afocal front group, it provides a unit magnification in the X direction
and 1/1.33 magnification in the Y direction. Thus the rear group can take the rotationally sym-
metric form.

One reason for choosing the front anamorphic attachment type for our design is its relatively
low aberration. Another major reason is that the number and position of non-rotationally sym-
metrical elements influence the assembling difficulty of the anamorphic lenses in mass produc-
tion. The azimuth error of freeform elements will bring an extra aberration such as astigmatism.
And the assembly difficulty will grow exponentially with the increase of the number of freeform
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elements. Thus, only two freeform elements will be used. These two freeform elements are
chosen as the front two elements, with the whole lens being divided into two parts, namely
a front part that needs to be carefully aligned in azimuth and a rotationally symmetric rear part.
This may show advantages over the middle anamorphic type or the rear anamorphic type.

The design process is based on a progressive method, as shown in Fig. 2. The specifications
for two sub-systems are obtained, and the initial systems for the front group and the rear group
are established, respectively. A combination of the two sub-systems provides the starting point
for optimization. The optimization stage includes a coarse optimization phase to explore

Fig. 1 The thin lens approximation for the anamorphic lens system.

Fig. 2 The flowchart of the design process.

Table 1 System specifications.

Focal length in Y direction (mm) 3.8

Anamorphic ratio (X∕Y ) 1.33

Sensor size (mm2) 4.8 × 3.2

Full FOV in Y direction (deg) 64

Full FOV in X direction (deg) 36

f∕# ∼2

Total thickness (mm) ≤10 mm

Distortion ≤5%
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different structures and a fine-tuning phase that utilizes upgraded surface expressions and all
possible variables to find the best result.

The material for each element is chosen following the basic idea that positive lens elements
have a low refractive index and high Abbe number while negative lenses have a high refractive
index and low Abbe number. Thus, we chose EP-type material (Mitsubishi Gas Chemical
nd ¼ 1.620, Vd ¼ 23.5) for negative lenses and APEL-type material (Mitsui Chemicals,
nd ¼ 1.535, Vd ¼ 56.1) for positive lenses for the starting point.

2.1 Starting Point for the Anamorphic Front Group

The anamorphic group takes the two-element form and is first designed to be an afocal inverse
telescope in the Y direction, and all four surfaces have an infinity radius in the X direction. This
can be achieved by a negative cylindrical lens followed by a positive one. The anamorphic ratio
of the front group is expressed by −fy2∕fy1, where fy1 and fy2 are focal lengths of the first and
the second cylindrical lens, respectively. Thus, the starting point of the front group is modeled in
the lens design software with two cylindrical lenses, and the stop is placed 0.5 mm behind the
second lens. A lens model with a 4.93-mm focal length is placed after the stop surface as an
equivalent of the rear group. An optimization is performed to obtain the optimized surface
curvatures while maintaining the target focal length in the Y direction. The result is shown in
Fig. 3(a).

2.2 Starting Point for the Rear Group

The rotationally symmetric rear group transfers the image plane in the X and Y directions onto
the sensor. To balance the size of each element, the stop surface is placed on the front surface
of the first lens in the rear group. A 5-element lens configuration is chosen as the starting point.
The field angle is set in accordance with the output ray angles of the front anamorphic group.

Considering the system parameters of the rear group, the 5-element, “positive–negative–
positive–positive–negative” structure is adopted for the starting point. For such a miniature lens,
it is usually impossible to obtain a starting point with an acceptable imaging performance with
sphere elements. Aspheres are needed in the starting point, and wild aspheres that resemble
seagull wings usually exist at the starting point. We derived a set of polynomials to describe
such wild aspheres with the following concerns. First, it should use very few coefficients to
express the seagull surface so that designers can easily establish such surfaces at the starting
point. Second, the position of the extreme point can be easily manipulated by the designer,
enabling an interactive way to adjust the surface shape.

To facilitate the adjustment of the extreme point, its position is incorporated into the surface
description as parameters. An annually stitched expression is adopted in the way that the area

Fig. 3 The starting points for the front group and the rear group. (a) The anamorphic front group
consisting of two cylindrical lenses. (b) The rotationally symmetric rear group consisting of five
aspheric elements.
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from the axial point to the extreme point is described with one set of polynomials and the area
beyond the extreme point with another set of polynomials.

Suppose the surface profile is expressed by zðrÞ ¼ fbðrÞ þ
P

iaiPiðrÞ, and as illustrated in
Fig. 4, the coordinate r0 of the extreme point A and the coordinate r1 of point B are incorporated
into the surface expression. We have one possible constraint set for the fb and Pi in Eq. (1),

EQ-TARGET;temp:intralink-;e001;116;471

8>>>>><
>>>>>:

fbð0Þ ¼ 0

fb 0ð0Þ ¼ 0

fbðr0Þ ¼ zb
fb 0ðr0Þ ¼ 0

fb 00ðr1Þ ¼ 0

and

8>>><
>>>:

Pið0Þ ¼ 0
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0ð0Þ ¼ 0
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0ðr0Þ ¼ 0
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00ðr1Þ ¼ 0

; (1)

where zb is a coefficient that adjusts the shape. For the optical area in the outer zone, another set
of bi is used for Pi, and the continuity is self-guaranteed. The surface expression for the annu-
larly stitched extreme-point-based polynomial (ASEP) is shown in Eq. (2),
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The proposed surface description is implemented as the user-defined surface type in the lens
design software CODE V29 with r0, r1, zb, ai, and bi used as variables in optimization.

The optical surfaces in the rear group are first modeled as a conic surface, and then low-order
aspheric terms are added. ASEP works as the tool for the design to tune the shape of wild
aspheres. During optimization, once the optical surface turns into the seagull shape, it is con-
verted to the ASEP expression. Manual adjustment of the extreme points’ positions on the ASEP
surfaces is performed when the optimization process stagnates. The shape of the outer zone on
ASEP is constantly modified to address some ray-tracing failure problems.

The starting point for the rear group is obtained after the optimization process, which is
shown Fig. 3(b). The front surface of L6 and both surfaces of L7 are described by ASEP, and
the remaining surfaces are aspheric. During this process, the focal length is 4.93 mm, the above-
mentioned two materials are used, and a local optimization is performed to achieve a relatively
good imaging quality.

Fig. 4 Coordinate representation for the ASEP surface. Aðr 0; z0Þ is the extreme point, and
Bðr 1; z1Þ is the point where Z 00ðr Þ ¼ 0.
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2.3 Constraints

When performing first-order parameter control, it is important to obtain the real paraxial focal
length of the system. In particular, for XY-polynomial (XYP) and ASEP surfaces, the coeffi-
cients for x2, y2, or r2 will contribute to the focal length. Thus, the default effective focal length
evaluated by the lens design software may not be accurate enough. For optimizing the XYP
surface obtained by surface fitting from the anamorphic asphere surface (AAS), the x2 term
is used to control the anamorphic ratio; otherwise, the widened field of view (FOV) may be
obtained mainly by the negative distortion in the Y direction. The paraxial curvatures are
obtained using Eq. (3),

EQ-TARGET;temp:intralink-;e003;116;619

8<
:

CUX ¼ d2z∕dx2
½1þðdz∕dxÞ2�3∕2 ¼ CUXB þ 2a � sign_flag

CUY ¼ d2z∕dy2
½1þðdz∕dyÞ2�3∕2 ¼ CUYB

; (3)

where CUX and CUY denote the real paraxial curvatures in the X and Y directions, respectively,
CUXB and CUYB denote the curvatures provided by the conic base, a denotes the coefficient for
the x2 term, and sign_flag is either 1 or −1 according to whether a adds to the absolute curvature.

When wild aspheres exist in the system, the physical interference cannot be fulfilled effec-
tively by center thickness or edge thickness. For this condition, the axial air clearance at the
extreme point is controlled to avoid lens overlapping. Other physical constraints are set to benefit
the fabrication of each element using the precision molding method. For example, the minimum
center thickness or edge thickness of each element is set to be no thinner than 0.25 mm. The edge
thickness in the air between each element is controlled to be greater than 0.1 mm. The total
thickness is controlled to be within 10 mm.

For such a non-rotationally symmetric system, the default distortion control code provided by
the lens design software cannot meet the demand. In particular, when XYP surfaces are used, the
distortion in the X direction is not evaluated. In our design process, the real image height is used
as the definition of the field angle, which ensures that the entire rectangular image area is evalu-
ated even though distortion exists. In this case, the incident angle of the principle rays of the
marginal fields is restricted according to the f · tan θ model to limit the distortion in the X and Y
directions.

2.4 Optimization

A progressive optimization strategy with surface upgrade is adopted. At the beginning of the
coarse optimization phase, the cylindrical front group and the aspheric rear group are combined,
and a preliminary optimization is performed to make all rays have the right path and no ray-
tracing errors exist while maintaining the focal length. Then, the cylindrical surfaces are con-
verted into Y-toroid (YTO) or AAS surfaces. The curvatures in the X and Y directions as well as
aspheric coefficients are set as variables in optimization. The front group no longer needs to be
afocal. Stricter constraints on anamorphic ratio and distortion are added. Global optimizations
are repeatedly performed to obtain results with the best MTF performance.

In the fine-tuning phase, the YTO or AAS surfaces are upgraded to XY-polynomials (XYP)
freeform surfaces that are able to provide more degrees of freedom in optimization. The ASEP
surfaces are converted back to aspheres for fabrication purposes. This conversion process cannot
be realized by mathematical transformation; thus, a surface fitting method is used. When all four
surfaces of the front group are XYP surfaces, the fine-tuning optimization is performed. The
MTF values between different field angles are balanced, and the distortion is carefully adjusted
in this stage.

3 Design Result and Analysis

A design result is obtained using the method described in Sec. 2; its code is in Ref. 30.
Figures 5(a) and 5(b) show the 2D layout of the design result in the XOZ and YOZ planes,
respectively. The front and rear surfaces of L1 and L2 are all freeform surfaces described by
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Fig. 5 The 2D layout of the design result. The layout in the XOZ plane is shown in (a) and the
layout in the YOZ plane is shown in (b).

Fig. 6 The performance of the design result. (a) MTF curves, (b) the RMS spot diameters over the
field, and (c) the distortion grid.
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XYP, and the remaining elements are aspheric. The overall length of the design is 9.5 mm, which
makes it easy to be integrated into mobile devices. The f∕# in the X and Y directions are 1.97 and
1.9, respectively.

The MTF curves and the field map of the design result are shown in Fig. 6. The average MTF
value of all field angles reaches 0.35 at 200 lp∕mm. The field map shows the RMS spot diam-
eters over the whole FOV, which implies a balanced performance over fields. Except for the
peripherical area, the RMS spot size is within 5 μm. The maximum tangential distortion of the
design result is about 3.55%, which is negligible for video watching and can be further calibrated
through post-processing.

The anamorphic characteristics of the design result are illustrated by the image simulation in
Fig. 7. Figure 7(a) shows the original 2:1 format scene, and Fig. 7(b) shows the 3:2 format
simulated image captured by the design result using CODE V. To obtain the wide-screen effect,
the simulated image is restored by stretching to the 2:1 format, and the final image is shown in
Fig. 7(c). In the simulation, the residual distortion causes a slim, black area at both ends in the
horizontal direction. But for real use, these areas correspond to a slightly larger horizontal FOV.

4 Discussion

4.1 Imaging Quality and the Distortion

In the design of a miniature anamorphic lens, a trade-off between the anamorphic ratio and the
distortion shows up. A system with a smaller anamorphic ratio and greater negative distortion in
the Y direction may provide the same FOV in the X and Y directions as a system with a greater

Fig. 7 Image simulation of the design result. (a) The original scene, (b) the simulated image
captured by the design result, and (c) the restored image for wide screen display.
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anamorphic ratio and negligible distortion. And in our design process, the latter often shows
better performance in image quality, i.e., higher MTF curves. Figure 8 shows one design result
with an anamorphic ratio of 1.33, and its maximum distortion reaches 11% in the tangential
direction. Due to the large negative distortion in the Y direction, the paraxial focal length is
4.13 mm in the Y direction while maintaining an FOV of 64 deg in the Y direction. The
FOV in the X direction decreases to 32 deg. The ratio of FOVs in the Y and X directions is
equivalent to a distortion-free anamorphic system with an anamorphic ratio of 1.45. Hence,
under some circumstance in which image quality is more important than distortion performance,
the negative distortion strategy can be adopted.

Fig. 8 Performance of another design result with higher MTF curves but larger distortion. (a) The
MTF curves of the design result. (b) The distortion grid. The translucent pink area indicates the
active area of the sensor. It can be inferred from (b) that the anamorphic effect is increased by
the large negative distortion in the Y direction.
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Three designs with the XYP front group but with different emphases on distortion are shown
in Fig. 9, among which the “XYP2” is the design result in Sec. 3. This further shows the “trade-
off” between distortion and imaging quality for a certain structure.

4.2 Comparison between Front Groups with Different Surface Expressions

Considering that cylindrical is a special subset of both toroid surfaces and anamorphic aspheres,
two upgrade paths can be adopted. Thus, to analyze the influence of surface types in optimi-
zation, the results with different surface types are illustrated in Fig. 9. As shown in Fig. 9, adding
aspheric or freeform terms to the front group helps to improve the MTF values. Surfaces with
more degrees of freedom tend to more flexible surfaces that improve MTF values at the cost of
distortion. Thus, distortion control is more important for AAS or XYP designs. The design of
the anamorphic front group with two AAS or XYP elements can achieve comparable imaging
quality, while XYP offers more degrees of freedom to improve the image quality of the worst
sampled field angle.

5 Conclusions

In this paper, we have designed a miniature anamorphic lens by employing two freeform lenses
as the front group and five aspheric lenses as the rear group. The overall system achieved an
anamorphic ratio of 1.33 and an f∕# of 1.9 in the Y direction, with an FOVof 65.3 deg× 35 deg .
The total length of the design result was as short as 9.5 mm. The design method and constraints
in optimization were detailed, and the design result was analyzed. This paper also illustrated
a condition in which freeform elements were adopted in axial systems to obtain some special
optical ability, i.e., the anamorphic characteristics. In the future, we will study the design of
a miniature wide-angle anamorphic lens that provides an ultra-wide FOV in the horizontal
direction for landscape photography.

Fig. 9 The MTF values at 200 lp∕mm and the maximum distortion performance for design results
with different surface types. “YTO” denotes the design with two Y-toroid elements; “YTO+AAS”
denotes the design with one Y-toroid element and one AAS element; “AAS” denotes the design
with two AAS elements; “XYP+AAS” denotes the design with one AAS element and one XYP
element; “XYP1,” “XYP2,” and “XYP3” are three designs with 2 XYP elements each. Colored bars
stand for the range of MTF values at 200 lp∕mm over the entire FOV, and the line in the bar illus-
trates the average MTF value. Red circles denote the maximum tangential distortion (%) for each
design result. All design results are optimized with similar constraints except that the distortion of
the “AAS” and “XYP3” designs is carefully controlled.
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