27 February 2024 Dynamic coherence scanning interferometry based on an optical phase mask for simultaneous measurement of local induced vibration and local topology change of a mirror
Author Affiliations +
Abstract

We describe the state of the development of a coherence scanning interferometer to measure local changes in topology and local induced vibrations of a mirror at cryogenic temperatures. The metrology instrument incorporates an optical phase mask and a microlenses array, enabling the acquisition of complete white light interferograms within a single-camera frame. This stands in contrast to traditional temporal phase-shifting interferometers. We design the optical phase mask as a combination of steps of different thicknesses, so each step introduces a different optical path difference to the rays. The local interferograms for each camera frame provide us with information on the local topology of the mirror. The interferogram displacement between camera frames allows us to monitor the mirror’s local induced vibrations. In this work, we report the metrology instrument’s working principle through numerical simulations and present the latest results of a proof of concept developed at the laboratory. The metrology instrument shown is of extensive usability in diverse applications related to real-time measurements of various fast physical processes and real-time characterization of the optical components topology.

© 2024 Society of Photo-Optical Instrumentation Engineers (SPIE)
Jesús Vilaboa Pérez, Marc P. Georges, Juriy Hastanin, and Jérôme Loicq "Dynamic coherence scanning interferometry based on an optical phase mask for simultaneous measurement of local induced vibration and local topology change of a mirror," Optical Engineering 63(2), 024111 (27 February 2024). https://doi.org/10.1117/1.OE.63.2.024111
Received: 1 December 2023; Accepted: 14 February 2024; Published: 27 February 2024
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Mirrors

Equipment

Microlens array

Vibration

Cameras

Interferograms

Interferometers

Back to Top