Instrumentation, Metrology, and Standards for Nanomanufacturing, Optics, and Semiconductors VI

Michael T. Postek
Victoria A. Coleman
Ndubuisi G. Orji
Editors

13–14 August 2012
San Diego, California, United States

Sponsored and Published by
SPIE

Volume 8466
Contents

vii Conference Committee
ix Introduction

SESSION 1 NANOMANUFACTURING METROLOGY I

8466 02 High-rate, roll-to-roll nanomanufacturing of flexible systems (Invited Paper) [8466-1]
K. P. Cooper, U.S. Naval Research Lab. (United States); R. F. Wachter, National Science
Foundation (United States)

8466 03 Metrology and instrumentation challenges with high-rate, roll-to-roll manufacturing of
flexible electronic systems [8466-2]
H. Subbaraman, Omega Optics, Inc. (United States); X. Lin, X. Xu, A. Dodabalapur, The
Univ. of Texas at Austin (United States); L. J. Guo, Univ. of Michigan (United States);
R. T. Chen, The Univ. of Texas at Austin (United States)

8466 04 Metrology challenges for high-rate nanomanufacturing of polymer structures [8466-3]
J. Mead, C. Barry, Univ. of Massachusetts Lowell (United States); A. Busnaina, J. Isaacs,
Northeastern Univ. (United States)

8466 05 Performances and limitations of Lab-to-Fab strategies for inline optical metrology [8466-4]
E. Nolot, A. André, CEA-LETI-Minatec (France); A. Michallet, STMicroelectronics (France)

8466 06 In-line control and characterization of nanomaterials synthesis from hyperspectral
polarimetric light scattering: an experimental method [8466-5]
R. Ceolato, N. Riviere, ONERA (France); B. Biscans, CNRS-LGC UMR 5503 (France)

8466 07 Defect inspection strategies for 14 nm semiconductor technology [8466-6]
R. Buengener, GLOBALFOUNDRIES Inc. (United States)

SESSION 2 NOVEL INSTRUMENTS AND IMPROVEMENTS I

8466 09 Object-depending artifacts in confocal measurements [8466-8]
F. Mauch, W. Lyda, M. Gronle, W. Osten, Univ. Stuttgart (Germany)

8466 0A Advances in metrology for the determination of Young’s modulus for low-k dielectric thin
films [8466-9]
S. W. King, G. A. Antonelli, Intel Corp. (United States); G. Stan, National Institute of
Standards and Technology (United States) and Univ. of Maryland (United States);
R. F. Cook, National Institute of Standards and Technology (United States); R. Sooryakumar,
The Ohio State Univ. (United States)
Blue irradiance intercomparison in the medical field [8466-10]
A. F. G. Ferreira, Jr., IPT - Instituto de Pesquisas Tecnológicas [Brazil]

SESSION 3 METROLOGY AND STANDARDS

New reference material for transmission electron microscope calibration [8466-11]
M. N. Filippov, JSC Ctr. for Surface and Vacuum Research (Russian Federation); N.S. Kurnakov Institute of General and Inorganic Chemistry (Russian Federation); and Moscow Institute of Physics and Technology (Russian Federation); V. P. Gavrilenko, JSC Ctr. for Surface and Vacuum Research (Russian Federation) and Moscow Institute of Physics and Technology (Russian Federation); M. V. Kovalchuk, Russian Research Ctr. Kurchatov Institute (Russian Federation); V. B. Mityukhlyaev, A. V. Rakov, JSC Ctr. for Surface and Vacuum Research (Russian Federation); P. A. Todua, JSC Ctr. for Surface and Vacuum Research (Russian Federation) and Moscow Institute of Physics and Technology (Russian Federation); A. L. Vasiliev, Russian Research Ctr. Kurchatov Institute (Russian Federation)

First steps towards a scatterometry reference standard [8466-12]
B. Bodermann, Physikalisch-Technische Bundesanstalt (Germany); P.-E. Hansen, Danish Fundamental Metrology Ltd. (Denmark); S. Burger, JCMwave GmbH (Germany); M.-A. Henn, H. Gross, M. Bär, F. Scholze, J. Endres, M. Wurm, Physikalisch-Technische Bundesanstalt (Germany)

Multiple-order imaging for optical critical dimension metrology using microscope characterization [8466-14]
J. Qin, H. Zhou, B. M. Barnes, F. Goasmat, R. Dixon, R. M. Silver, National Institute of Standards and Technology (United States)

SESSION 4 NOVEL INSTRUMENTS AND IMPROVEMENTS II

Plasmonic-enhanced infrared photoexpansion nano-spectroscopy using tunable quantum cascade lasers [8466-17]
F. Lu, M. A. Belkin, The Univ. of Texas at Austin (United States)

Active retroreflector to measure the rotational orientation in conjunction with a laser tracker [8466-18]
O. Hofherr, Albert-Ludwigs-Univ. Freiburg (Germany); C. Wachten, PI miCos GmbH (Germany); C. Müller, H. Reinecke, Albert-Ludwigs-Univ. Freiburg (Germany)

Imaging of short time microscopic scenes with strong light emission: revisited [8466-19]
C. Hahlweg, W. Zhao, H. Vogeler, H. Rothe, Helmut-Schmidt Univ. (Germany)

A large-scale ceramic package of the CMOS image sensor chip for remote sensing application [8466-20]
C.-H. Chang, J. Ling, S.-H. Lo, W.-C. Hsu, C. Liu, National Space Organization (Taiwan)
SESSION 5 CHARACTERIZATION: MACRO, MICRO, AND NANO I

8466 0O Graphene Raman imaging and spectroscopy processing: characterization of graphene growth [8466-22]
M. G. Babenco, Univ. Nacional de Córdoba (Argentina); L. Tao, D. Akinwande, The Univ. of Texas at Austin (United States)

8466 0Q A portable modular optical sensor capable of measuring complex multi-axis strain fields [8466-24]
W. Zhao, B. T. Beck, R. J. Peterman, C.-H. J. Wu, Kansas State Univ. (United States)

SESSION 6 CHARACTERIZATION: MACRO, MICRO, AND NANO II

8466 0R Non-destructive 3D characterization of microchannels [8466-25]
V. Heikkinen, A. Nolvi, I. Kassamakov, Univ. of Helsinki (Finland); K. Grigoras, VTT Technical Research Ctr. of Finland (Finland); S. Franssila, Aalto Univ. (Finland); E. Hæggström, Univ. of Helsinki (Finland)

8466 0S Optical testing for meter size aspheric optics [8466-26]
P. Su, C. J. Oh, C. Zhao, College of Optical Sciences, Univ. of Arizona (United States); J. H. Burge, College of Optical Sciences, Univ. of Arizona (United States) and Steward Observatory, The Univ. of Arizona (United States)

8466 0T Comparison of refractive indices measured by m-lines and ellipsometry: application to polymer blend and ceramic thin films for gas sensors [8466-27]
T. Wood, J. Le Rouzo, IM2NP, CNRS, Aix-Marseille Univ. (France); F. Flory, IM2NP, CNRS, Aix-Marseille Univ. (France) and Ecole Centrale Marseille (France); P. Coudray, Kloé SA (France); V. R. Mastelaro, P. Pelissari, S. Zilio, São Paulo Univ. (Brazil)

Author Index
Conference Committee

Symposium Chairs
- **David L. Andrews**, University of East Anglia Norwich (United Kingdom)
- **James G. Grote**, Air Force Research Laboratory (United States)

Symposium Cochairs
- **Satoshi Kawata**, Osaka University (Japan)
- **Manijeh Razeghi**, Northwestern University (United States)

Conference Chair
- **Michael T. Postek**, National Institute of Standards and Technology (United States)

Conference Cochairs
- **Victoria A. Coleman**, National Measurement Institute of Australia (Australia)
- **Ndubuisi G. Orji**, National Institute of Standards and Technology (United States)

Conference Program Committee
- **Russell A. Chipman**, College of Optical Sciences, The University of Arizona (United States)
- **Khershed P. Cooper**, U.S. Naval Research Laboratory (United States)
- **Aaron Cordes**, Sematech North (United States)
- **John Cowie**, Agenda 2020 Technology Alliance (United States)
- **Nora Savage**, U.S. Environmental Protection Agency (United States)
- **John Small**, National Institute of Standards and Technology (United States)
- **Shouhong Tang**, KLA-Tencor Corporation (United States)
- **George Thompson**, Intel Corporation (United States)
- **Vladimir A. Ukraintsev**, Nanometrology International, Inc. (United States)
- **Xianfan Xu**, Purdue University (United States)
- **Wei Zhou**, Rudolph Technologies, Inc. (United States)
Session Chairs

1 Nanomanufacturing Metrology I
 Michael T. Postek, National Institute of Standards and Technology
 (United States)
 Victoria A. Coleman, National Measurement Institute of Australia
 (Australia)

2 Novel Instruments and Improvements I
 Aaron Cordes, Sematech North (United States)
 Wei Zhou, Rudolph Technologies, Inc. (United States)

3 Metrology and Standards
 Ndubuisi G. Orji, National Institute of Standards and Technology
 (United States)
 Aaron Cordes, Sematech North (United States)

4 Novel Instruments and Improvements II
 Russell A. Chipman, College of Optical Sciences, The University of Arizona (United States)
 Victoria A. Coleman, National Measurement Institute of Australia
 (Australia)

5 Characterization: Macro, Micro, and Nano I
 Victoria A. Coleman, National Measurement Institute of Australia
 (Australia)
 Ndubuisi G. Orji, National Institute of Standards and Technology
 (United States)

6 Characterization: Macro, Micro, and Nano II
 Wei Zhou, Rudolph Technologies, Inc. (United States)
 Ndubuisi G. Orji, National Institute of Standards and Technology
 (United States)
Introduction

The Instrumentation, Metrology, and Standards for Nanomanufacturing, Optics, and Semiconductors VI (Conference 8466) brought together a broad spectrum of scientists and manufacturing engineers into a common forum to discuss the issues associated with measurements and standards for nanomanufacturing. Nanomanufacturing is the essential bridge between the discoveries of nanoscience and real world nanotech products and it is the vehicle by which the world will realize the promise of major technological innovation across a spectrum of products that will affect virtually every industrial sector. For nanotech products to achieve the broad impacts envisioned, they must be manufactured in market-appropriate quantities in a reliable, repeatable, and commercially viable manner. In addition, they must be manufactured so that environmental and human health concerns are met, worker safety issues are appropriately assessed and handled, and liability issues are addressed. Critical to this realization of robust nanomanufacturing is the development of the necessary instrumentation, metrology, and standards. Integration of these instruments, interoperability, and information management are also critical elements that must be considered for viable nanomanufacturing. Advanced instrumentation, metrology and standards allows the physical dimensions, properties, functionality, and purity of the materials, processes, tools, systems, products, and emissions that will constitute nanomanufacturing to be measured and characterized. This will in turn enable production to be scalable, controllable, predictable, and repeatable to meet market needs. If a nano-product cannot be measured it cannot be manufactured; additionally if that product cannot be made safely it also should not be manufactured.

The Instrumentation, Metrology, and Standards for Nanomanufacturing, Optics, and Semiconductors VI is a relatively new conference, but is now beginning to develop a constituency and the goal is to become the leading forum for the exchange of foundational information and discussion of instrumentation, metrology, and standards which are needed components of nanomanufacturing. The conference was composed of 28 papers broken up into six technical sessions with the highlight of this year’s conference being the plenary session covering various aspects of roll-to-roll nanomanufacturing. A great advantage of this conference is its diversity of technical content. This diversity facilitates cross pollination of various disciplines and reinforces the multidisciplinary nature of nanotechnology.

Michael T. Postek
Victoria A. Coleman
Ndubuisi G. Orji