Front Matter: Volume 8639
Vertical-Cavity Surface-Emitting Lasers XVII

Kent D. Choquette
James K. Guenter
Editors

6–7 February 2013
San Francisco, California, United States

Sponsored and Published by
SPIE

Volume 8639
The papers included in this volume were part of the technical conference cited on the cover and title page. Papers were selected and subject to review by the editors and conference program committee. Some conference presentations may not be available for publication. The papers published in these proceedings reflect the work and thoughts of the authors and are published herein as submitted. The publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Please use the following format to cite material from this book:

ISSN: 0277-786X
ISBN: 9780819494085

Published by
SPIE
P.O. Box 10, Bellingham, Washington 98227-0010 USA
Telephone +1 360 676 3290 (Pacific Time) · Fax +1 360 647 1445
SPIE.org

Copyright © 2013, Society of Photo-Optical Instrumentation Engineers.

Copying of material in this book for internal or personal use, or for the internal or personal use of specific clients, beyond the fair use provisions granted by the U.S. Copyright Law is authorized by SPIE subject to payment of copying fees. The Transactional Reporting Service base fee for this volume is $18.00 per article (or portion thereof), which should be paid directly to the Copyright Clearance Center (CCC), 222 Rosewood Drive, Danvers, MA 01923. Payment may also be made electronically through CCC Online at copyright.com. Other copying for republication, resale, advertising or promotion, or any form of systematic or multiple reproduction of any material in this book is prohibited except with permission in writing from the publisher. The CCC fee code is 0277-786X/13/$18.00.

Printed in the United States of America.

Publication of record for individual papers is online in the SPIE Digital Library.

SPIEDigitalLibrary.org

Paper Numbering: Proceedings of SPIE follow an e-First publication model, with papers published first online and then in print and on CD-ROM. Papers are published as they are submitted and meet publication criteria. A unique, consistent, permanent citation identifier (CID) number is assigned to each article at the time of the first publication. Utilization of CIDs allows articles to be fully citable as soon as they are published online, and connects the same identifier to all online, print, and electronic versions of the publication. SPIE uses a six-digit CID article numbering system in which:

- The first four digits correspond to the SPIE volume number.
- The last two digits indicate publication order within the volume using a Base 36 numbering system employing both numerals and letters. These two-number sets start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B … 0Z, followed by 10-1Z, 20-2Z, etc.

The CID Number appears on each page of the manuscript. The complete citation is used on the first page, and an abbreviated version on subsequent pages. Numbers in the index correspond to the last two digits of the six-digit CID Number.
Contents

ix Conference Committee
xi Introduction
xiii Group IV photonics for the mid infrared (Plenary Paper) [8629-1]
R. Soref, The Univ. of Massachusetts at Boston (United States)
xxix Light in a twist: optical angular momentum (Plenary Paper) [8637-2]
M. J. Padgett, Univ. of Glasgow (United Kingdom)

SESSION 1 COMMERCIAL DEVELOPMENTS

8639 02 VCSELs for high-speed data networks (Invited Paper) [8639-1]
M. V. Ramana Murty, L. Giovane, Avago Technologies Ltd. (United States); S. K. Ray,
Technologies Singapore (Singapore)

8639 03 The next generation high data rate VCSEL development at SEDU (Invited Paper) [8639-2]
C. Xie, N. Li, S. Huang, C. Liu, L. Wang, K. P. Jackson, Sumitomo Electric Device Innovations,
U.S.A., Inc. (United States)

8639 04 Progress and challenges in industrial fabrication of wafer-fused VCSELs emitting in the
1310-nm band for high-speed wavelength division multiplexing applications (Invited
Paper) [8639-3]
V. Iakovlev, A. Sirbu, Ecole Polytechnique Fédérale de Lausanne (Switzerland) and
Beam Express S.A. (Switzerland); Z. Micković, D. Ellafi, Ecole Polytechnique Fédérale de
Lausanne (Switzerland); G. Suruceanu, A. Mereuta, A. Caliman, Beam Express S.A.
(Switzerland); E. Kapon, Ecole Polytechnique Fédérale de Lausanne (Switzerland) and
Beam Express S.A. (Switzerland)

SESSION 2 NOVEL WAVELENGTHS

8639 05 Progress in extended wavelength VCSEL technology (Invited Paper) [8639-4]
K. Johnson, M. Dummer, M. Hibbs-Brenner, W. Hogan, C. Steidl, Vixar Inc. (United States)

8639 06 Demonstration of nonpolar GaN-based vertical-cavity surface-emitting lasers
(Invited Paper) [8639-5]
C. Holder, Univ. of California, Santa Barbara (United States); D. Feezell, The Univ. of New
Mexico (United States); J. S. Speck, S. P. DenBaars, S. Nakamura, Univ. of California, Santa
Barbara (United States)

8639 07 Comprehensive analysis of GaSb-based mid-infrared vertical-cavity surface-emitting
lasers [8639-6]
Z. Q. Li, Z. M. Simon Li, Crosslight Software Inc. (Canada)
SESSION 3 NEW STRUCTURES

<table>
<thead>
<tr>
<th>Paper Number</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>8639 08</td>
<td>Ultra-compact vertical-cavity surface-emitting lasers using a double set of photonic crystal mirrors (Invited Paper) [8639-7]</td>
<td>C. Sciancalepore, Ecole Centrale de Lyon (France) and CEA-LETI-Minatec (France); B. Ben Bakir, CEA-LETI-Minatec (France); X. Letartre, C. Seassal, P. Viktorovitch, Ecole Centrale de Lyon (France)</td>
</tr>
<tr>
<td>8639 09</td>
<td>Heat assisted magnetic recording (HAMR) with nano-aperture VCSELs for 10 Tbi/in² magnetic storage density [8639-8]</td>
<td>S. Hussain, S. Kundu, C. S. Bhatia, H. Yang, A. J. Danner, National Univ. of Singapore (Singapore)</td>
</tr>
<tr>
<td>8639 0A</td>
<td>VCSELs with nematic and cholesteric liquid crystal overlays [8639-9]</td>
<td>K. Panajotov, Vrije Univ. Brussel (Belgium) and Institute of Solid State Physics (Bulgaria); M. Dems, Technical Univ. of Lodz (Poland); C. Belmonte, H. Thielenpont, Vrije Univ. Brussel (Belgium); Y. Xie, J. Beeckman, K. Neyts, Ghent Univ. (Belgium)</td>
</tr>
<tr>
<td>8639 0B</td>
<td>An ultra-stable VCSEL light source [8639-10]</td>
<td>J. Downing, USL Technologies LLC (United States); D. Babić, Univ. of Zagreb (Croatia); M. Hibbs-Brenner, Vixar Inc. (United States)</td>
</tr>
</tbody>
</table>

SESSION 4 TUNABLE VCSELS

<table>
<thead>
<tr>
<th>Paper Number</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>8639 0C</td>
<td>Widely tunable singlemode surface micro-machined MEMS-VCSELs operating at 1.95-μm [8639-11]</td>
<td>K. Zogal, Technische Univ. Darmstadt (Germany); T. Gruendl, Walter Schottky Institut (Germany); C. Gierl, S. Paul, Technische Univ. Darmstadt (Germany); C. Grasse, Walter Schottky Institut (Germany); P. Meissner, Technische Univ. Darmstadt (Germany); M.-C. Amann, Walter Schottky Institut (Germany); F. Küppers, Technische Univ. Darmstadt (Germany)</td>
</tr>
<tr>
<td>8639 0E</td>
<td>Vertical cavity surface emitting laser with nematic and chiral liquid crystals overlay [8639-13]</td>
<td>Y. Xie, J. Beeckman, W. Woestenborghs, Ghent Univ. (Belgium); K. Panajotov, Vrije Univ. Brussel (Belgium); K. Neyts, Ghent Univ. (Belgium)</td>
</tr>
<tr>
<td>8639 0F</td>
<td>Giant wavelength-temperature dependence of 850nm VCSELs with a metal/semiconductor thermally actuated mirror [8639-14]</td>
<td>M. Nakahama, H. Sano, S. Inoue, A. Matsutani, T. Sakaguchi, F. Koyama, Tokyo Institute of Technology (Japan)</td>
</tr>
<tr>
<td>8639 0G</td>
<td>Widely tunable MEMS-VCSELs operating at > 70 °C [8639-15]</td>
<td>C. Gierl, Technische Univ. Darmstadt (Germany); T. Gründl, Walter Schottky Institut (Germany); K. Zogal, S. Paul, Technische Univ. Darmstadt (Germany); C. Grasse, G. Böhm, Walter Schottky Institut (Germany); P. Meissner, Technische Univ. Darmstadt (Germany); M.-C. Amann, Walter Schottky Institut (Germany); F. Küppers, Technische Univ. Darmstadt (Germany)</td>
</tr>
</tbody>
</table>
Far-field emission characteristics and linewidth measurements of surface micro-machined MEMS tunable VCSELs [8639-16]
S. Paul, C. Gierl, Technische Univ. Darmstadt (Germany); T. Gründl, Walter Schottky Institut (Germany); K. Zogal, P. Meissner, Technische Univ. Darmstadt (Germany); M.-C. Amann, Walter Schottky Institut (Germany); F. Küppers, Technische Univ. Darmstadt (Germany)

SESSION 5 RELIABILITY AND PERFORMANCE

The range of VCSEL wearout reliability acceleration behavior and its effects on applications [8639-17]
J. Günter, L. Graham, B. Hawkins, R. Hawthorne, R. Johnson, G. Landry, J. Tatum, Finisar Corp. (United States)

25 Gbps and beyond: VCSEL development at Philips [8639-18]
M. Grabherr, S. Intemann, S. Wabra, P. Gerlach, M. Riedl, R. King, Philips Technologie GmbH U-L-M Photonics (Germany)

28 Gb/s 850 nm oxide VCSEL development at Avago [8639-19]

Reliability and degradation of oxide VCSELs due to reaction to atmospheric water vapor [8639-20]
A. Dafinca, A. R. Weidberg, Univ. of Oxford (United Kingdom); S. J. McMahon, Rutherford Appleton Lab. (United Kingdom); A. A. Grillo, Univ. of California, Santa Cruz (United States); P. Farthouat, CERN (Switzerland); M. Ziolkowski, Univ. Siegen (Germany); R. W. Herrick, C8 MediSensors, Inc. (United States)

SESSION 6 HIGH POWER

VCSEL arrays with integrated optics (Invited Paper) [8639-21]
H. Moench, S. Gronenborn, Philips Technologie GmbH (Germany); X. Gu, Philips Lighting B.V. (Netherlands); J. Kolb, Philips Technologie GmbH (Germany); M. Miller, Philips Technologie GmbH U-L-M Photonics (Germany); P. Pekarski, U. Weichmann, Philips Technologie GmbH (Germany)

Development of a high power vertical-cavity surface-emitting laser array with ion-implanted current apertures (Invited Paper) [8639-22]

High-power red VCSEL arrays [8639-23]

Proc. of SPIE Vol. 8639 863901-5
SESSION 7 SINGLE MODE LASERS

8639 0Q Numerical analysis of photonic-crystal VCSELs (Invited Paper) [8639-25]
T. Czyszanowski, M. Dems, R. P. Sarzala, Technical Univ. of Lodz (Poland); K. Panajotov, Vrije Univ. Brussel (Belgium)

8639 0S Improved single-mode emission characteristics of long-wavelength wafer-fused vertical-cavity surface-emitting lasers by intra-cavity patterning [8639-27]
N. Volet, Ecole Polytechnique Fédérale de Lausanne (Switzerland); T. Czyszanowski, J. Walczak, Technical Univ. of Lodz (Poland); L. Mutter, B. Dwir, Z. Micković, Ecole Polytechnique Fédérale de Lausanne (Switzerland); P. Gallo, BeamExpress S.A. (Switzerland); V. Iakovlev, A. Sirbu, Ecole Polytechnique Fédérale de Lausanne (Switzerland); W. Caliman, A. Mereuta, Beam Express S.A. (Switzerland); E. Kapon, Ecole Polytechnique Fédérale de Lausanne (Switzerland)

8639 0T 22 Gb/s error-free data transmission beyond 1 km of multi-mode fiber using 850 nm VCSELs [8639-28]
R. Safaisini, K. Szczerba, E. Haglund, P. Westbergh, J. S. Gustavsson, A. Larsson, P. A. Andreksen, Chalmers Univ. of Technology (Sweden)

SESSION 8 HIGH SPEED VCSELS

8639 0U Traveling wave electro-optically modulated coupled-cavity surface emitting lasers [8639-29]
M. Zujewski, H. Thienpont, Vrije Univ. Brussel (Belgium); K. Panajotov, Vrije Univ. Brussel (Belgium) and Institute of Solid State Physics (Bulgaria)

8639 0V Impact of the aperture diameter on the energy efficiency of oxide-confined 850 nm high speed VCSELs [8639-30]
P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, Technische Univ. Berlin (Germany); N. N. Ledentsov, Vertically Integrated Systems Gmbh (Germany); D. Bimberg, Technische Univ. Berlin (Germany) and King Abdulaziz Univ. (Saudi Arabia)

8639 0W Push-pull modulation of lateral coupling of dual VCSEL cavities using a bow-tie shape [8639-31]
H. Dalir, A. Matsutani, F. Koyama, Tokyo Institute of Technology (Japan)

8639 0X High-speed 850 nm VCSELs with 28 GHz modulation bandwidth for short reach communication [8639-32]
P. Westbergh, R. Safaisini, E. Haglund, J. S. Gustavsson, A. Larsson, Chalmers Univ. of Technology (Sweden); A. Joel, IQE Europe Ltd. (United Kingdom)
8639 0Y

High-frequency signal generation using 1550 nm VCSEL subject to two-frequency optical injection [8639-33]
A. Consoli, Univ. Politécnica de Madrid (Spain); A. Quirce, A. Valle, Instituto de Física de Cantabria, CSIC, Univ. de Cantabria (Spain); I. Esquivias, Univ. Politécnica de Madrid (Spain); L. Pesquera, Instituto de Física de Cantabria, CSIC, Univ. de Cantabria (Spain); J. M. García Tijero, Univ. Politécnica de Madrid (Spain)

Author Index
Conference Committee

Symposium Chair

David L. Andrews, University of East Anglia Norwich (United Kingdom)

Symposium Co chairs

Alexei L. Glebov, OptiGrate Corporation (United States)
Klaus P. Streubel, OSRAM GmbH (Germany)

Program Track Chair

Klaus P. Streubel, OSRAM GmbH (Germany)

Conference Chairs

Kent D. Choquette, University of Illinois at Urbana-Champaign (United States)
James K. Guenter, Finisar Corp. (United States)

Conference Program Committee

Kent M. Geib, Sandia National Laboratories (United States)
Martin Grabherr, Philips Technologie GmbH U-L-M Photonics (Germany)
Jeong-Ki Hwang, Avago Technologies Singapore (Singapore)
Fumio Koyama, Tokyo Institute of Technology (Japan)
Anders Larsson, Chalmers University of Technology (Sweden)
Kevin L. Lear, Colorado State University (United States)
Chun Lei, EMCORE Corporation (United States)
James A. Lott, Technische Universität Berlin (Germany)
Krassimir Panajotov, Vrije Universiteit Brussel (Belgium)
Jean-François Seurin, Princeton Optronics, Inc. (United States)
Noriyuki Yokouchi, Furukawa Electric Company, Ltd. (Japan)

Session Chairs

1 Commercial Developments
 Kent D. Choquette, University of Illinois at Urbana-Champaign (United States)

2 Novel Wavelengths
 James K. Guenter, Finisar Corporation (United States)
3 New Structures
 Kent M. Geib, Sandia National Laboratories (United States)

4 Tunable VCSELs
 Krassimir Panajotov, Vrije Universiteit Brussel (Belgium)

5 Reliability and Performance
 Jean-Francois Seurin, Princeton Optronics, Inc. (United States)

6 High Power
 Daniel M. Grasso, Coherent, Inc. (United States)

7 Single Mode Lasers
 Fumio Koyama, Tokyo Institute of Technology (Japan)

8 High Speed VCSELs
 Tomasz Czyszczanowski, Technical University of Lodz (Poland)
Introduction:

It has been two decades since VCSEL papers began to appear at Photonics West and this is the seventeenth Proceedings of the conference dedicated to VCSELs. Many aspects of VCSELs have seen enormous progress. In these Proceedings you will find VCSELs with wavelengths ranging from the blue to two microns in the infrared, with effective apertures ranging from a few hundred nanometers to many tens of micrometers, and with optical powers ranging from less than 1 milliwatt to many watts. Additionally, you will discover VCSELs with data-communication modulation rates near 50 gigabits per second, VCSELs with wavelengths tunable over a range of a hundred nanometers or more, and VCSELs with a range of materials and structures incorporated into their construction so as to afford control of characteristics unthinkable two decades ago.

At the same time, as other papers in these Proceedings demonstrate, some of the details of VCSEL degradation mechanisms remain mysterious even as the reliability continues to improve.

While they had many obvious potential manufacturing advantages, the original VCSELs were all low power devices with limited applications. (Limited application types, rather, as total volumes in the data communication and laser mouse markets have reached many hundreds of millions of devices.) It seemed likely that applications requiring high power would perpetually be the realm of edge-emitting lasers. Over the last decade or so, as documented in previous editions of these proceedings, arrays of VCSELs have demonstrated very high optical power and, as they became available, it was found that some of their emission characteristics such as low coherence and circular symmetry made them more effective than any alternative in some applications.

Similar processions of VCSEL-impossible, to possible, to product are in process today. One example uses widely tunable VCSELs fabricated with monolithic dome structures. This first appeared here only a few years ago. Originally aimed at gas sensing applications, they now have been found also to be nearly ideal light sources for optical coherence tomography (OCT), and are today available in commercial imaging products. OCT has become so important in medical and other imaging fields that there is an entire Photonics West BIOS conference dedicated to it with over a hundred papers this year, several dedicated to the significant advantages the tunable VCSEL brings.
What will cause VCSELs to shine next? Maybe it will be the control of polarization properties afforded by integration with liquid crystals as explored in more than one paper in this Proceedings. Otherwise, maybe red VCSELs will enter the high-power arena as another paper portends. Yogi Berra famously said something like, "It's tough to make predictions, especially about the future." This is as true of technology as of any other field. But it seems nevertheless that we can predict with confidence that the ways in which we can exploit VCSELs have not yet been exhausted, and we'll have interesting material for many VCSEL conferences yet to come.

James Guenter
Kent Choquette