Airborne Intelligence, Surveillance, Reconnaissance (ISR) Systems and Applications X

Daniel J. Henry
Davis A. Lange
Dale Linne von Berg
S. Danny Rajan
Thomas J. Walls
Darrell L. Young
Editors

1–2 May 2013
Baltimore, Maryland, United States

Sponsored and Published by
SPIE
The papers included in this volume were part of the technical conference cited on the cover and title page. Papers were selected and subject to review by the editors and conference program committee. Some conference presentations may not be available for publication. The papers published in these proceedings reflect the work and thoughts of the authors and are published herein as submitted. The publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Please use the following format to cite material from this book:

ISSN: 0277-786X
ISBN: 9780819495044

Published by
SPIE
P.O. Box 10, Bellingham, Washington 98227-0010 USA
Telephone +1 360 676 3290 (Pacific Time) · Fax +1 360 647 1445
SPIE.org

Copyright © 2013, Society of Photo-Optical Instrumentation Engineers.

Copying of material in this book for internal or personal use, or for the internal or personal use of specific clients, beyond the fair use provisions granted by the U.S. Copyright Law is authorized by SPIE subject to payment of copying fees. The Transactional Reporting Service base fee for this volume is $18.00 per article (or portion thereof), which should be paid directly to the Copyright Clearance Center (CCC), 222 Rosewood Drive, Danvers, MA 01923. Payment may also be made electronically through CCC Online at copyright.com. Other copying for republication, resale, advertising or promotion, or any form of systematic or multiple reproduction of any material in this book is prohibited except with permission in writing from the publisher. The CCC fee code is 0277-786X/13/$18.00.

Printed in the United States of America.

Publication of record for individual papers is online in the SPIE Digital Library.

SPIEDigitalLibrary.org

Paper Numbering: Proceedings of SPIE follow an e-First publication model, with papers published first online and then in print and on CD-ROM. Papers are published as they are submitted and meet publication criteria. A unique, consistent, permanent citation identifier (CID) number is assigned to each article at the time of the first publication. Utilization of CIDs allows articles to be fully citable as soon as they are published online, and connects the same identifier to all online, print, and electronic versions of the publication. SPIE uses a six-digit CID article numbering system in which:

- The first four digits correspond to the SPIE volume number.
- The last two digits indicate publication order within the volume using a Base 36 numbering system employing both numerals and letters. These two-number sets start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B ... 0Z, followed by 10-1Z, 20-2Z, etc.

The CID Number appears on each page of the manuscript. The complete citation is used on the first page, and an abbreviated version on subsequent pages. Numbers in the index correspond to the last two digits of the six-digit CID Number.
Contents

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>SESSION 1</td>
<td>ISR VISION, MISSIONS, AND TACTICS</td>
<td></td>
</tr>
<tr>
<td>8713 04</td>
<td>Gadget: a new model for tactical manned reconnaissance [8713-3]</td>
<td>B. Arapsun, A. Bora, Turkish Air Force (Turkey)</td>
</tr>
<tr>
<td>8713 05</td>
<td>A wireless sensor network design and implementation for vehicle detection, classification, and tracking [8713-47]</td>
<td>A. Aljaafreh, Tafila Technical Univ. (Jordan); A. Al Assaf, King Abdullah II Design and Development Bureau (Jordan)</td>
</tr>
<tr>
<td>SESSION 2</td>
<td>ISR SENSORS I: SYSTEMS, OPTICS, AND GIMBALS</td>
<td></td>
</tr>
<tr>
<td>8713 06</td>
<td>Advanced metal mirror processing for tactical ISR systems [8713-6]</td>
<td>J. P. Schaefer, Raytheon EO Innovations (United States)</td>
</tr>
<tr>
<td>8713 07</td>
<td>Cost-effective multispectral three-mirrors anastigmat sensor for high-performance surveillance applications using electroformed free-form mirrors [8713-7]</td>
<td>M. Rossi, R. Banham, Media Lario Technologies (Italy); D. Blandino, Optec S.p.A. (Italy); G. Borghi, I. Ferrario, Media Lario Technologies (Italy); R. Formaro, Agenzia Spaziale Italiana (Italy); W. Giage, Raytheon ELCAN Optical Technologies (Canada); N. Missaglia, S. Moretti, Media Lario Technologies (Italy); I. Neil, ScotOptix (Switzerland); A. Ritucci, Media Lario Technologies (Italy); A. Sposito, Agenzia Spaziale Italiana (Italy); V. Syvokin, Raytheon ELCAN Optical Technologies (Canada); G. Valsecchi, P. Zago, F. E. Zocchi, Media Lario Technologies (Italy)</td>
</tr>
<tr>
<td>8713 08</td>
<td>Gimbal system configurations and line-of-sight control techniques for small UAV applications [8713-8]</td>
<td>R. Miller, G. Mooty, Ascendant Engineering Solutions, LLC (United States); J. M. Hilkert, Alpha-Theta Technologies (United States)</td>
</tr>
<tr>
<td>SESSION 3</td>
<td>ISR SENSORS II: LASERCOM AND ACOUSTICS</td>
<td></td>
</tr>
<tr>
<td>8713 0A</td>
<td>LaserCom in UAS missions: benefits and operational aspects [8713-9]</td>
<td>W. Griethe, F. Heine, Tesat-Spacecom GmbH & Co. KG (Germany); L. L. Begg, D. Du, General Atomics Aeronautical Systems, Inc. (United States)</td>
</tr>
</tbody>
</table>
SESSION 4 ISR SENSORS III: HYPER/MULTISPECTRAL IMAGING

8713 0D A long-wave infrared hyperspectral sensor for Shadow class UAVs [8713-14]
P. G. Lucey, Univ. of Hawai’i at Manoa (United States); J. T. Akagi, J. L. Hinrichs, Spectrum Photonics, Inc. (United States); S. T. Crites, R. Wright, Univ. of Hawai’i at Manoa (United States)

8713 0E Novel compact airborne platform for remote sensing applications using the Hyper-Cam infrared hyperspectral imager [8713-15]
C. S. Turcotte, E. Puckrin, Defence Research and Development Canada, Valcartier (Canada); F. Aube, V. Farley, S. Savary, M. Chamberland, Telops, Inc. (Canada)

SESSION 5 ISR SENSORS IV: CMOS AND SAR

8713 0F Low-light NV-CMOS image sensors for day/night imaging [8713-17]

8713 0G The capability of time- and frequency-domain algorithms for bistatic SAR processing [8713-18]
V. T. Vu, T. K. Sjögren, M. I. Pettersson, Blekinge Institute of Technology (Sweden)

8713 0H Another possibility to focus moving targets by normalized relative speed in UWB SAR [8713-19]
V. T. Vu, T. K. Sjögren, M. I. Pettersson, Blekinge Institute of Technology (Sweden)

8713 0I Validating a UAV artificial intelligence control system using an autonomous test case generator [8713-5]
J. Straub, J. Huber, Univ. of North Dakota (United States)

SESSION 6 ISR PROCESSING I: IMAGE CORRECTION/ENHANCEMENT

8713 0J Real-time focal-plane wavefront sensing for compact imaging phased-array telescopes: numerical and experimental demonstration [8713-20]
B. Denolle, F. Cassaing, J. Montri, J. Lisowski, ONERA (France) and Observatoire de Paris, CNRS, Univ. Paris Diderot (France); J. P. Amans, Observatoire de Paris à Meudon (France) and Observatoire de Paris, CNRS, Univ. Paris Diderot (France)

8713 0K Computational imaging for aberrated optics (CIAO): experimental results [8713-21]
R. E. Saperstein, E. Ranalli, P. Mock, A. Husain, Ziva Corp. (United States)

8713 0L ATCOM: accelerated image processing for terrestrial long-range imaging through atmospheric effects [8713-22]
P. F. Curt, A. Paolini, EM Photonics, Inc. (United States)
SESSION 7 ISR PROCESSING II: IMAGE EXPLOITATION

8713 0M A comparison of the mean square error performance of speckle and MFBD image reconstruction techniques under anisoplanatic long-horizontal-path imaging [8713-23]
G. E. Archer, J. P. Bos, M. C. Roggemann, Michigan Technological Univ. (United States)

8713 0O A comparative analysis of dynamic range compression techniques in IR images for maritime applications [8713-25]
A. Rossi, Univ. di Pisa (Italy); N. Acito, Accademia Navale di Livorno (Italy); M. Diani, Univ. di Pisa (Italy); C. Luison, Altran Italy S.p.A. (Italy); M. Olivieri, G. Barani, Selex ES S.p.A. (Italy)

SESSION 8 ISR PROCESSING III: IMAGE EXPLOITATION (CONT.)

8713 0Q An estimation algorithm of the multispectral image geometric transformation parameters based on multiple reference area tracking [8713-27]
B. Alpatov, V. Strotov, Ryazan State Radio Engineering Univ. (Russian Federation)

8713 0R OREOS: a new EO-IR modeling and simulation tool for U.S. Coast Guard search and rescue applications [8713-28]
S. E. Lane, C. S. Nichols, A. M. Thomas, J. M. Cathcart, Georgia Tech Research Institute (United States)

8713 0S Situational awareness investigation using tracking and enhancement of imagery with highly dynamic lighting conditions [8713-29]
A. V. Kanaev, C. W. Miller, U.S. Naval Research Lab. (United States); C. J. Seanor, J. Murray-Krezan, Air Force Research Lab. (United States)

8713 0T Parallax visualization plug-in toolset for pursuer WAMI data [8713-30]
C. A. Mayhew, C. M. Mayhew, M. B. Forgues, Vision III Imaging, Inc. (United States)

SESSION 9 ISR PROCESSING IV: IMAGE STABILIZATION

8713 0U Meta-image navigation augmenters for unmanned aircraft systems (MINA for UAS) [8713-31]
K. Çelik, A. K. Somani, Iowa State Univ. (United States); B. Schnaufer, P. Y. Hwang, G. A. McGraw, J. Nadke, Rockwell Collins, Inc. (United States)

8713 0V Density estimation in aerial images of large crowds for automatic people counting [8713-32]
C. Herrmann, J. Metzler, Fraunhofer IOSB (Germany)

8713 0W Electronic image stabilization algorithms based on flight characteristics of the small UAV [8713-33]
S. Liu, H. Zhao, L. Wang, Peking Univ. (China); Y. Mai, National Earthquake Response Support Service (China)
A method of intentional movement estimation of oblique small-UAV videos stabilized based on homography model [8713-34]
S. Guo, China Univ. of Mining and Technology Bejing (China) and Peking Univ. (China); Y. Mai, National Earthquake Response Support Service (China); H. Zhao, Peking Univ. (China); P. Gao, National Astronomical Observatories (China)

SESSION 10 ISR PROCESSING V: MOTION VIDEO

Cognitive video quality analysis [8713-35]
D. L. Young, C. Li, Raytheon Intelligence & Information Systems (United States)

Real-time video image quality estimation supports enhanced tracker performance [8713-36]
J. M. Irvine, R. J. Wood, The Charles Stark Draper Lab. (United States)

Motion adaptive signal integration-high dynamic range (MASI-HDR) video processing for dynamic platforms [8713-37]
M. R. Placentino, D. C. Berends, D. C. Zhang, E. Gudis, SRI International (United States)

SESSION 11 ISR PROCESSING VI: DETECTION AND TRACKING

3D target tracking using a pan and tilt stereovision system [8713-38]
M. A. Akhloufi, A. Regent, R. Ssosse, Ctr. de Robotique et de Vision Industrielles (Canada)

Reliable ISR algorithms for a very-low-power approximate computer [8713-39]
R. S. Eaton, J. C. McBride, Charles River Analytics, Inc. (United States); J. Bates, Singular Computing, LLC (United States)

Real-time low-power neuromorphic hardware for autonomous object recognition [8713-40]
D. Khosla, Y. Chen, D. J. Huber, D. J. Van Buer, K. Kim, S. Y. Cheng, HRL Labs., LLC. (United States)

An integrated multitarget tracking system for interacting target scenarios [8713-41]
H. Mao, Arizona State Univ. (United States); G. P. Abousleman, General Dynamics C4 Systems (United States); J. Si, Arizona State Univ. (United States)

Object detection and tracking under planar constraints [8713-42]
Q. He, Mississippi Valley State Univ. (United States); C.-H. H. Chu, Univ. of Louisiana at Lafayette (United States); A. Camargo, Ingenia Technology Ltd. (Peru)

POSTER SESSION

Efficient parallel implementation of real-time airborne target tracking system on heterogeneous multicore SoC [8713-44]
X. Gao, H. Mao, E. Munson, Arizona State Univ. (United States); G. P. Abousleman, General Dynamics C4 Systems (United States); J. Si, Arizona State Univ. (United States)
Conference Committee

Symposium Chair

Kenneth R. Israel, Major General (USAF Retired) (United States)

Symposium Cochair

David A. Whelan, Boeing Defense, Space, and Security (United States)

Conference Chair

Daniel J. Henry, Rockwell Collins, Inc. (United States)

Conference Cochairs

Davis A. Lange, UTC Aerospace Systems (United States)
Dale Linne von Berg, U.S. Naval Research Laboratory (United States)
S. Danny Rajan, Exelis Visual Information Solutions (United States)
Thomas J. Walls, U.S. Naval Research Laboratory (United States)
Darrell L. Young, Raytheon Intelligence & Information Systems (United States)

Session Chairs

1 ISR Vision, Missions, and Tactics
 Daniel J. Henry, Rockwell Collins, Inc. (United States)

2 ISR Sensors I: Systems, Optics, and Gimbals
 Davis A. Lange, UTC Aerospace Systems (United States)

3 ISR Sensors II: Lasercom and Acoustics
 Davis A. Lange, UTC Aerospace Systems (United States)

4 ISR Sensors III: Hyper/Multispectral Imaging
 Dale Linne von Berg, U.S. Naval Research Laboratory (United States)

5 ISR Sensors IV: CMOS and SAR
 Thomas J. Walls, U.S. Naval Research Laboratory (United States)

6 ISR Processing I: Image Correction/Enhancement
 S. Danny Rajan, Exelis Visual Information Solutions (United States)
7 ISR Processing II: Image Exploitation
S. Danny Rajan, Exelis Visual Information Solutions (United States)

8 ISR Processing III: Image Exploitation (cont.)
Darrell L. Young, Raytheon Intelligence & Information Systems (United States)

9 ISR Processing IV: Image Stabilization
Darrell L. Young, Raytheon Intelligence & Information Systems (United States)

10 ISR Processing V: Motion Video
Darrell L. Young, Raytheon Intelligence & Information Systems (United States)

11 ISR Processing VI: Detection and Tracking
Darrell L. Young, Raytheon Intelligence & Information Systems (United States)
Introduction

This year’s conference brought a wide range of papers related to ISR Systems and Applications. We had papers that addressed many different parts of the TCPED image chain (Tasking, Capture, Processing, Exploitation, and Dissemination). We began our conference by discussing the evolution of ISR strategy/missions in today’s society and how technology (mobile phones and social media) has enhanced the availability and dissemination of information. Then we progressed into sensor technologies, processing to enhance image quality, target tracking, and then image/video evaluation/quantification/visualization.

I would like to thank all the authors for their efforts to write and present their excellent papers. Their innovations in this exciting field make our conference better each year, and I look forward to the 2014 conference to see what additional advances have been made in these areas, as well as the introduction of new technologies that have been developed.

See you at DSS 2014!

Daniel J. Henry