Developments in X-Ray Tomography IX

Stuart R. Stock
Editor

18–20 August 2014
San Diego, California, United States

Sponsored and Published by
SPIE

Volume 9212
Contents

vii Authors
ix Conference Committee
xi Introduction

WELCOME AND OPENING REMARKS

9212 02 Trends in micro- and nano-computed tomography 2012-2014 [9212-1]

PHASE IMAGING I

9212 03 Grating interferometry-based phase microtomography of atherosclerotic human arteries (Invited Paper) [9212-2]
9212 04 Single grating phase contrast imaging for x-ray microscopy and microtomography [9212-3]
9212 05 Quantitative edge illumination x-ray phase contrast tomography [9212-4]
9212 06 Grating-based x-ray phase-contrast imaging at PETRA III [9212-5]

NUMERICAL METHODS I

9212 07 Dictionary learning based low-dose x-ray CT reconstruction using a balancing principle (Invited Paper) [9212-6]
9212 08 Practical pseudo-3D registration for large tomographic images [9212-7]
9212 09 Strategies for efficient scanning and reconstruction methods on very large objects with high-energy x-ray computed tomography [9212-8]
9212 0A Correction of beam hardening artefacts in microtomography for samples imaged in containers [9212-9]
9212 0B Improving spatial-resolution in high cone-angle micro-CT by source deblurring [9212-10]

APPLICATIONS I

9212 0C Diffraction computed tomography reveals the inner structure of complex biominerals (Invited Paper) [9212-11]
9212 0D Synchrotron radiation-based characterization of interconnections in microelectronics: recent 3D results [9212-12]
Fast x-ray micro-tomography imaging study of granular packing under tapping [9212-13]

TUBE-BASED TOMOGRAPHY

Brute force absorption contrast microtomography (Invited Paper) [9212-17]
Liquid-metal-jet x-ray tube technology and tomography applications [9212-18]
An evaluation to design high performance pinhole array detector module for four head SPECT: a simulation study [9212-19]
NanoXCT: development of a laboratory nano-CT system [9212-20]

SYNCHROTRON TOMOGRAPHY

TomoPy: A framework for the analysis of synchrotron tomographic data [9212-22]
P05 imaging beamline at PETRA III: first results [9212-23]

PHASE IMAGING II

Tumors in murine brains studied by grating-based phase contrast microtomography (Invited Paper) [9212-25]
X-ray phase contrast tomography from whole organ down to single cells [9212-26]
Three-dimensional imaging of human hippocampal tissue using synchrotron radiation- and grating-based micro computed tomography [9212-27]
Second order x-ray in-line phase-contrast imaging [9212-28]
Evaluation of neural cochlear structures after noise trauma using x-ray tomography (Invited Paper) [9212-29]

APPLICATIONS II

Submicrometer structure of sea urchin tooth via remote synchrotron microCT imaging (Invited Paper) [9212-30]
Characterization of a human tooth with carious lesions using conventional and synchrotron radiation-based micro computed tomography [9212-31]
Applied x-ray computed tomography with high resolution in paleontology using laboratory and synchrotron sources [9212-32]
Numerical Methods II

<table>
<thead>
<tr>
<th>Paper ID</th>
<th>Title</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9212-33</td>
<td>Three-dimensional registration of synchrotron radiation-based micro-computed tomography images with advanced laboratory micro-computed tomography data from murine kidney casts</td>
<td>[9212-33]</td>
</tr>
<tr>
<td>9212-34</td>
<td>SEM-based system for 100nm x-ray tomography for the analysis of porous silicon</td>
<td>[9212-34]</td>
</tr>
<tr>
<td>9212-35</td>
<td>Apocalypto: revealing lost text with XMT</td>
<td>[9212-35]</td>
</tr>
</tbody>
</table>

Poster Session

<table>
<thead>
<tr>
<th>Paper ID</th>
<th>Title</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9212-42</td>
<td>High-resolution x-ray computed tomography to understand ruminant phylogeny</td>
<td>[9212-42]</td>
</tr>
<tr>
<td>9212-43</td>
<td>Integrated control system environment for high-throughput tomography</td>
<td>[9212-43]</td>
</tr>
<tr>
<td>9212-44</td>
<td>Characterization of the CCD and CMOS cameras for grating-based phase-contrast tomography</td>
<td>[9212-44]</td>
</tr>
<tr>
<td>9212-45</td>
<td>Image reconstruction for x-ray K-edge imaging with a photon counting detector</td>
<td>[9212-45]</td>
</tr>
<tr>
<td>9212-47</td>
<td>Carotid plaque characterization using CT and MRI scans for synergistic image analysis</td>
<td>[9212-47]</td>
</tr>
<tr>
<td>9212-48</td>
<td>CT image-based quantification of sub-pixel diameter microparticle accumulations in tissues using a priori biological information</td>
<td>[9212-48]</td>
</tr>
<tr>
<td>9212-49</td>
<td>Total variation minimization-based multimodality medical image reconstruction</td>
<td>[9212-49]</td>
</tr>
<tr>
<td>9212-50</td>
<td>A study of EM failure in a micro-scale Pb-free solder joint using a custom lab-scale x-ray computed tomography system</td>
<td>[9212-50]</td>
</tr>
<tr>
<td>9212-52</td>
<td>High performance data management and analysis for tomography</td>
<td>[9212-52]</td>
</tr>
</tbody>
</table>
Authors

Numbers in the index correspond to the last two digits of the six-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first four digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Achterhold, Klaus, 0X
Almer, Jonathan D., 0C
Anderson, Jill L., 1C
Andersson, Tommy, 0J
Arfelli, Fulvia, 0S
Audoit, G., 0D, 0Z
Bahadur, Ali, 1B
Bai, Ti, 07
Balzer, Matthias, 18
Bartels, Matthias, 0R
Beckmann, Felix, 03, 06, 00, 0Q, 0W, 0X, 0Y, 17, 18
Bertheau, J., 0D
Berti, G., 0L
Bidola, Pidassa, 0X
Birkbak, Mie, 0C
Birkedal, Henriik, 0C
Blair, Justin, 03, 0W, 0Y
Boehnel, Michael, 09
Bruyndonckx, P., 04
Burmeister, Hilmar, 06, 00
Burmeister, Jörg, 18
Buscema, Marzia, 03
Canon, Richard S., 1G
Cao, Xuelin, 0E
Caselle, Michele, 18
Caffin, Philippe C., 03
Charbonnier, J., 0D
Chawla, Nikhilesh, 1E
Chicherova, Natalia, 03
Chillingaryan, Suren, 18
Cloetens, P., 0D
Cong, Wenxiang, 0T, 19
Costeurt, Loic, 16
Cui, Xueling, 1D
Davis, Graham R., 0I, 10
De Carlo, Francesco, 0N
Deslippe, Jack, 1G
Deyhle, Hans, 03, 0W, 0Y
Dhmaz, Paul C., 0S
Djomeni Weleguela, M. L., 0D
Dominetto, Marco, 0Q, 0S
Dose, Thomas, 06, 00
Dreossi, Diego, 05
Dziadowiec, Iwona, 0W
Ehrbar, Stefanie, 0Y
Endrizzi, Marco, 05
Espes, Emil, 0J
Essiari, Abdelhak, 1G
Fauconneau, M., 14
Ferreira Sanchez, D., 0D
Fezzaa, Kamel, 0E
Frisching, Markus, 09, 0L
Friedrich, Frank, 0O
Frolich, Simon, 0C
Gaillard, F-X., 0Z
Gehrke, Rainer, 17
Geleta, Matthew, 11
Gergaud, P., 0D
Getzin, Matthew, 1B
Gratzer, Christina, 0J
Greving, Imke, 06, 0O, 0S, 18
Güroy, Doğa, 0N
Hagen, Charlotte K., 05
Hammelet, Jörg U., 0O
Hansson, Björn A., 0M, 0J
Heindl, C., 0L
Hemberg, Oscar, 0J
Herzen, Julia, 03, 06, 0O, 0X, 0Y, 18
Hexemer, Alexander, 1G
Hieber, Simone E., 03, 0Q, 0S, 0Y
Hipp, Alexander, 06, 0O, 18
Hodaj, F., 0D
Holmgren, A., 0L
Holme, Margaret N., 03
Holt, Jeremy, 0A
Jacobsen, Chris, 0N
Johansson, Göran, 0J
Jorgensen, Steven M., 1C
Kastner, J., 0L
Kelly, Christopher, 0S
Kenesei, Peter, 0C
Khimchenko, Anna, 0S, 0Y
Khokhriakov, Igor, 17, 18
Kingston, Andrew M., 0A, 0B, 11, 13, 14
Kirchhofs, R., 06
Kopmann, Andreas, 17, 18
Kou, Binquan, 0E
Kovacs, Zsófia, 0Q
Kracl, Thorsten, 17
Krenkel, Martin, 0R
Kronstedt, Johan, 0J
Krumm, M., 0L
Kuo, Willy, 0Y
Kurtcuoglu, Vartan, 0Y
Lai, Yu-kun, 10
Laloum, D., 0Z
Laperre, Kjell, 08
Larsson, D. H., 0L
Latham, S., 13
Lennartz, Michelle R., 1B
Li, Heyang, 0B
Li, Jindong, 0E
Liddy, Whitney, 0U
Lingor, Paul, 0R
Liu, Xuan, 08
Longo, Renata, 05
Lopez, Frances C. M., 05
Lorut, F., 0D
Lottermoser, Lars, 06, 0O, 17, 18
Lytaev, Pavel, 06, 18
MacDowell, Alastair A., 1G
Madi, Saaussan, 1B
Mariani, Luigi, 0S
Marmaras, Anastasios, 0Y
Meng, Bo, 19
Mertens, J. C. E., 1E
Meyer, Eric P., 0Y
Meyer-Loges, Stephan, 18
Micha, J.-S., 0D
Millis, David, 0I, 10
Mou, Xuanqin, 07
Müller, Bert, 03, 0Q, 0S, 0W, 0Y, 16
Müller, Martin, 0O
Myers, Glenn R., 0B, 11, 13, 14
Nachtrab, F., 0L
Ogurreck, Mafte, 00
Olga, Ufuk, 0Y
Olivo, Alessandro, 05
Otendal, Mikael, 0J
Pacheco, Mirian L. A. F., 0X
Parkinson, Dillworth Y., 1G
Patton, Simon J., 1G
Pauwels, B., 04
Paziresh, Mahsa, 0A, 13
Pfeiffer, Franz, 0X
Pickering, Mark R., 0K
Plewska, Jörm, 18
Rack, Alexander, 0V
Rahman, Tasneem, 0K
Ramakrishnan, Lavanya, 1G
Rao, Arhant, 1B
Recur, Benoit, 0B, 11, 13, 14
Reims, Nils, 09
Richter, Claus-Peter, 0U
Rigor, Luigi, 05
Ritman, Erik L., 1C
Rosin, Poul, 10
Saltif, Tim, 0R
Sasov, Alexander, 04, 0B
Sauerwein, C., 0L
Saxer, Till, 03
Schild, Detlev, OR
Schmitz, Rüdiger, 03, 0Q, 0S
Schoen, Tobias, 09
Schreyer, Andreas, 06, 18
Schulz, Georg, 03, 0Q, 0S, 0W, 0Y, 16
Sheppard, Adrian P., 0A, 0B, 11, 13, 14
Speier, C., 0L
Stock, Stuart R., 02, 0C, 0U, 0V
Stockmar, Marco K., 0X
Sukowski, Frank, 09
Taftoreau, Paul, 0X
Tahtali, Murat, 0K
Takman, Per, 0J, 0L
Tamura, Nobumichi, 1G
Thalmann, Peter, 03, 0Q, 0S, 0Y
Thuaire, A., 0D
Tierney, Brian L., 1G
Töpperwien, Mareike, 0R
Tornellillas, R., 0Z
Tull, Craig E., 1G
Tuohimaa, Tomi, 0J, 0L
Turner, Michael, 0B
Uhlmann, N., 0L
Ulrich, O., 0D
Vernocke, Andrew J., 1C
Vo, Amanda, 0U
Vogelgesang, Matthias, 17, 18
Wang, Ge, 07, 0T, 19, 18, 1D
Wang, Yujie, 0E
Weitkamp, Tirnri, 03
Whitlen, Donna, 0U
Wilde, Fabian, 0O
Wintersberger, Eugen, 17
Wu, Junfeng, 07
Xi, Yan, 19
Xia, Chengjie, 0E
Xiao, Xianghui, 0E, 0N, 0U
Xu, Qiong, 07
Xu, Yiqin, 1B
Young, Hunter, 0U
Yu, Hengyong, 07, 1D
Conference Committee

Program Track Chairs

Carolyn A. MacDonald, University at Albany (United States)
Ralph B. James, Brookhaven National Laboratory (United States)

Conference Chair

Stuart R. Stock, Northwestern University (United States)

Conference Program Committee

Felix Beckmann, Helmholtz-Zentrum Geesthacht (Germany)
Graham R. Davis, Queen Mary, University of London (United Kingdom)
Atsushi Momose, Tohoku University (Japan)
Bert Müller, Basel University Hospital (Switzerland)
Andrew G. Peele, Australian Synchrotron (Australia) and La Trobe University (Australia)
Erik Leo Ritman, Mayo Clinic College of Medicine (United States)
Mark L. Rivers, The University of Chicago (United States)
Ge Wang, Rensselaer Polytechnic Institute (United States)

Session Chairs

1 Phase Imaging I
 Stuart R. Stock, Northwestern University (United States)

2 Numerical Methods I
 Ge Wang, Rensselaer Polytechnic Institute (United States)

3 Applications I
 Bert Müller, Basel University Hospital (Switzerland)

4 Tube-based Tomography
 Erik Leo Ritman, Mayo Clinic College of Medicine (United States)

5 Synchrotron Tomography
 Graham R. Davis, Queen Mary, University of London (United Kingdom)

6 Phase Imaging II
 Felix Beckmann, Helmholtz-Zentrum Geesthacht (Germany)
7 Applications II
Ge Wang, Rensselaer Polytechnic Institute (United States)

8 Numerical Methods II
Erik Leo Ritman, Mayo Clinic College of Medicine (United States)
Introduction

The field of x-ray tomography with emphasis on micro- and nano-scale 3D imaging continues to develop rapidly. Many more laboratory and storage-ring based Computed Tomography (CT) systems are in operation, churning out data sets, than there were in August 2012 when the last Developments conference was held. Spectral CT and photon counting CT are examples of rapidly developing modalities. Strategies are becoming increasingly sophisticated for rapid, accurate registration of tomography data sets with those of other modalities. Methods for reconstruction with limited data sets (missing angle ranges; small number of projections) and for phase reconstruction are becoming much more accessible.

The field remains vibrant. The editor has identified many more than 10^3 papers on x-ray microCT published annually, and there is great industrial effort which does not produce papers in the open literature. The third generation of tomographers is coming into their own (e.g., students of students of faculty such as Prof. Ulrich Bonse who established this conference). As time passes and a field becomes more mature, it is inevitable that members of this community are lost. Steve Wilkins, a longtime proponent of x-ray imaging, developer of innovative approaches and former member of the Program Committee, died between Developments meetings. Tom Breunig died suddenly; he has been out of the field for some years but was a key member of the teams doing the first in situ tomography loading experiments of cracked samples and the in vivo microCT of small animals.

The ninth conference in the Developments series filled two entire days (oral presentations) and an evening poster session. There was a stimulating balance between mathematical treatment of reconstructions and of artifact reduction on the one hand and experimental studies and analysis strategies and instrumentation development on the other. The diversity of applications underlined the mature interdisciplinary scope of the conference. The Editor thanks the authors for their excellent talks and papers, invited and contributed; 42 manuscripts from 53 presentations appear in the conference volume. He also thanks the Program Committee for their very important help; two of them reviewed each manuscript. The photograph below shows Committee members after one of the technical sessions. Last, but not least, the SPIE staff provided exemplary support with the program development, the meeting itself and the Proceedings.

The Program Committee after a session (from left to right): Bert Müller, Erik Ritman, Graham Davis, Stuart Stock, Ge Wang and Felix Beckmann

Stuart R. Stock