Optical Fibers and Sensors for Medical Diagnostics and Treatment Applications XV

Israel Gannot
Editor

7–8 February 2015
San Francisco, California, United States

Sponsored and Published by
SPIE

Volume 9317
Contents

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>vii Authors</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ix Conference Committee</td>
<td></td>
</tr>
<tr>
<td></td>
<td>vii Authors</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ix Conference Committee</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FIBERS AND SENSORS I</td>
<td></td>
</tr>
<tr>
<td>9317 03</td>
<td>Compact Raman needle probe with fine needle aspiration biopsy for solid tissues [9317-2]</td>
<td></td>
</tr>
<tr>
<td>9317 04</td>
<td>Photoacoustic spectroscopy of gaseous biomarker in simulated breath [9317-3]</td>
<td></td>
</tr>
<tr>
<td>9317 05</td>
<td>Transferability of antibody pairs from ELISA to fiber optic surface plasmon resonance for infliximab detection [9317-4]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FIBERS AND SENSORS II</td>
<td></td>
</tr>
<tr>
<td>9317 08</td>
<td>Automated long-term tracking of freely moving animal and functional brain imaging based on fiber optic microscopy [9317-7]</td>
<td></td>
</tr>
<tr>
<td>9317 09</td>
<td>In-vivo concentration ratio estimation of two fluorescent probes for early detection of Alzheimer’s Disease [9317-8]</td>
<td></td>
</tr>
<tr>
<td>9317 0A</td>
<td>UV and VIS far field intensity profile of optical fiber based flow cells [9317-9]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>INDUSTRY SESSION</td>
<td></td>
</tr>
<tr>
<td>9317 0B</td>
<td>MIR chalcogenide fiber and devices (Invited Paper) [9317-10]</td>
<td></td>
</tr>
<tr>
<td>9317 0C</td>
<td>Multicore optical fiber grating array fabrication for medical sensing applications [9317-11]</td>
<td></td>
</tr>
<tr>
<td>9317 0E</td>
<td>All-optical power and data transfer in catheters using an efficient LED [9317-13]</td>
<td></td>
</tr>
<tr>
<td>9317 0F</td>
<td>Improved deep UV fiber for medical and spectroscopy applications [9317-14]</td>
<td></td>
</tr>
<tr>
<td>9317 0G</td>
<td>Noninvasive continuous blood pressure monitoring [9317-15]</td>
<td></td>
</tr>
</tbody>
</table>
FIBERS AND SENSORS III

9317 0H Investigation of silver-only and silver/TOPAS coated hollow glass waveguides for visible and NIR laser delivery [9317-16]
9317 0I Improvement of transmission properties for a rugged polymer-coated silver hollow fiber [9317-17]
9317 0K Fiber-based polarimetric stress sensor for measuring the Young’s modulus of biomaterials [9317-19]
9317 0L Low cost fiber optic sensing of sugar solution [9317-20]
9317 0M Optical coherence tomography (OCT) in laser tissue bonding of incisions in the cornea [9317-42]

FIBERS AND SENSORS IV

9317 0P SMART micro-scissors based precise incision [9317-23]
9317 0R Phosphor-based fiber optic microprobes for ionizing beam radiation dosimetry [9317-25]

KEYNOTE SESSION

9317 0S UV-fibers: two decades of improvements for new applications (Keynote Paper) [9317-26]

FIBERS AND SENSORS V

9317 0T Design and fabrication of disposable plasmonic fiber probes for biosensing [9317-27]
9317 0U Active depth-locking handheld micro-injector based on common-path swept source optical coherence tomography [9317-28]
9317 0V Fiber optic direct Raman imaging system based on a hollow-core fiber bundle [9317-29]

FIBERS AND SENSORS VI

9317 0W All-fiber probe for laser-induced thermotherapy with integrated temperature measurement capabilities [9317-30]
FIBERS AND SENSORS VII

9317 12 Correction method of bending loss in the hollow optical fiber for endoscopic submucosal dissection using carbon dioxide laser [9317-36]

9317 13 Wide dynamic range sensing in photonic crystal microcavity biosensors [9317-37]

POSTER SESSION

9317 15 All optical phase stepping for optical imaging with nonlinearity in specialty fiber [9317-39]
Authors

Numbers in the index correspond to the last two digits of the six-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first four digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Alvarez, Oseas, 0B
Armani, Andrea M., 0K
Awazu, Kunio, 12
Barequet, Irina, 0M
Belz, Mathias, 0A
Bloemen, Maarten, 05
Braglia, A., 0T, 0W
Cha, Jaepyeong, 08
Chakravarty, Swapnajit, 13
Chen, Ray T., 13
Chen, W., 0W
Chenard, Francois, 0B
Cheon, Gyeong-Woo, 08, 0U
Choi, Eun-Seo, 15
Dafsheh, Arash, 0R
Delport, Filip, 05
Dhara, P., 0T
Diamandis, Haralambios, 09
Eom, Taek-Joong, 15
Fallauto, C., 0T
Feder, K. S., 0C
Finlay, Jarod C., 0R
Friedberg, Joseph S., 0R
Gabay, Ilan, 0M
Gannot, Israel, 09
Gassino, R., 0W
Geshell, Dale, 0F
Geukens, Nick, 05
Gils, Aron, 05
Harbater, Osnat, 09
Harrington, James A., 0H
Harrison, Mark C., 0K
Hazama, Hisanori, 12
Hovhannisyan, Levon, 0G
Huang, Yong, 0U
Huang, Zhiwei, 03
Inoue, S., 0V
Iwai, Katsumasa, 01
Kim, Bok-Hyung, 05
Kim, Do-Hyun, 04
Kim, Joo Ho, 15
Klein, Karl-Friedrich, 0A, 0S
Kremp, T., 0C
Kusakari, Daisuke, 12
Lammertyn, Jeroen, 05
Lee, Seung Seok, 15
Liu, Haoyang, 0R
Liu, Y., 0W
Lu, Jiadi, 0S
Matsura, Yuji, 0I, 0V
Meier, Jeffrey E., 0H
Miyaichi, Masahiro, 0I
Moawad, Hassan, 0B
Monberg, E., 0C
Mouradian, Vahram, 0G
Murray, Christopher B., 0R
Muthuraju, M. Esakkil, 0L
Najmr, Stan, 0R
Neudorfer, Meira, 0M
Olivero, M., 0T, 0W
Ortiz, R., 0C
Pachava, Vengakrao, 0L
Park, Hyun-Cheol, 0P
Patil, Anurag Reddy, 0L
Pekef, Martin, 0E
Perrone, Guido, 0T, 0W
Poghosyan, Armen, 0G
Popescu, V. A., 0T
Porat, Yishai, 0M
Puc, G., 0C
Puscas, N. N., 0T
Rosner, Mordechai, 0M
Shannon, John, 0F
Shi, Yi-Wei, 0I
Singh, V. K., 0T
Song, Cheol, 0P
Spasic, Dragana, 0S
Takaku, Hiroyuki, 0I
Tang, Naimei, 13
Taunay, T. F., 0C
Tenuto, Michael, 0R
Timmerman, Richard, 0F
U-Thainual, Paweena, 04
Vadakkappatu, Canthadai, Badrinath, 0L
Vallan, A., 0T, 0W
van der Mark, Martin B., 0E
van Dusschoten, Anneke, 0E
Van Stappen, Thomas, 0S
Varssano, David, 0M
Verbiest, Thierry, 0S
Wang, Jianfeng, 03
Wang, Zheng, 13
Werner, Jan, 0A
Westbrook, Paul S., 0C
Conference Committee

Symposium Chairs

James G. Fujimoto, Massachusetts Institute of Technology (United States)
R. Rox Anderson, Wellman Center for Photomedicine, Massachusetts General Hospital (United States) and Harvard School of Medicine (United States)

Program Track Chairs

Tuan Vo-Dinh, Fitzpatrick Institute for Photonics, Duke University (United States)
Anita Mahadevan-Jansen, Vanderbilt University (United States)

Conference Chair

Israel Gannot, Tel Aviv University (Israel)

Conference Program Committee

James P. Clarkin, Polymicro Technologies, a Subsidiary of Molex Incorporated (United States)
Ilko Ilev, U.S. Food and Drug Administration (United States)
Jin U. Kang, Johns Hopkins University (United States)
Karl-Friedrich Klein, Technische Hochschule Mittelhessen (Germany)
Pierre Lucas, The University of Arizona (United States)
Yuji Matsuura, Tohoku University (Japan)
Angela B. Seddon, The University of Nottingham (United Kingdom)

Session Chairs

1 Fibers and Sensors I
 Angela B. Seddon, The University of Nottingham (United Kingdom)

2 Keynote Speaker I
 Israel Gannot, Tel Aviv University (Israel)

3 Fibers and Sensors II
 James A. Harrington, Rutgers, The State University of New Jersey (United States)
4 Industry Session
Jim Clarkin, Polymicro Technologies, a Subsidiary of Molex Incorporated (United States)

5 Fibers and Sensors III
Jessica C. Ramella-Roman, Florida International University (United States)

6 Fibers and Sensors IV
Yuji Matsuura, Tohoku University (Japan)

7 Keynote II
Pierre Lucas, The University of Arizona (United States)

8 Fibers and Sensors V
Pierre Lucas, The University of Arizona (United States)

9 Fibers and Sensors VI
Jin U. Kang, Johns Hopkins University (United States)

10 Fibers and Sensors VII
Karl-Friedrich Klein, Technische Hochschule Mittelhessen (Germany)