Techniques and Instrumentation for Detection of Exoplanets VII

Stuart Shaklan
Editor

10–13 August 2015
San Diego, California, United States

Sponsored and Published by
SPIE

Volume 9605
Contents

<table>
<thead>
<tr>
<th>vii</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>xi</td>
<td>Conference Committee</td>
</tr>
</tbody>
</table>

WFIRST/AFTA I

<table>
<thead>
<tr>
<th>9605 02</th>
<th>Requirements and design reference mission for the WFIRST/AFTA coronagraph instrument [9605-1]</th>
</tr>
</thead>
<tbody>
<tr>
<td>9605 04</td>
<td>The WFIRST/AFTA coronograph instrument optical design [9605-3]</td>
</tr>
<tr>
<td>9605 05</td>
<td>An overview of WFIRST/AFTA coronagraph modeling [9605-4]</td>
</tr>
<tr>
<td>9605 06</td>
<td>Effect of DM actuator errors on the WFIRST/AFTA coronagraph contrast performance [9605-5]</td>
</tr>
<tr>
<td>9605 07</td>
<td>Wavefront correction with Kalman filtering for the WFIRST-AFTA coronagraph [9605-6]</td>
</tr>
</tbody>
</table>

WFIRST/AFTA II

<table>
<thead>
<tr>
<th>9605 09</th>
<th>Low order wavefront sensing and control for WFIRST-AFTA coronagraph [9605-8]</th>
</tr>
</thead>
<tbody>
<tr>
<td>9605 0A</td>
<td>Shaped pupil Lyot coronagraph designs for WFIRST/AFTA [9605-9]</td>
</tr>
<tr>
<td>9605 0B</td>
<td>Laboratory performance of the shaped pupil coronagraphic architecture for the WFIRST/AFTA coronograph [9605-10]</td>
</tr>
</tbody>
</table>

WFIRST/AFTA III

<table>
<thead>
<tr>
<th>9605 0E</th>
<th>The impact of radiation damage on photon counting with an EMCCD for the WFIRST-AFTA coronagraph [9605-13]</th>
</tr>
</thead>
<tbody>
<tr>
<td>9605 0G</td>
<td>Prototype imaging spectrograph for coronagraphic exoplanet studies (PISCES) for WFIRST/AFTA [9605-15]</td>
</tr>
</tbody>
</table>

HIGH CONTRAST LABORATORY RESULTS

<table>
<thead>
<tr>
<th>9605 0H</th>
<th>Studies of the effects of control bandwidth and dark-hole size on the HCIT contrast performance [9605-16]</th>
</tr>
</thead>
<tbody>
<tr>
<td>9605 0I</td>
<td>High-contrast imager for complex aperture telescopes (HiCAT): 3. first lab results with wavefront control [9605-17]</td>
</tr>
<tr>
<td>Session ID</td>
<td>Title</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td>9605 0J</td>
<td>EXCEDE technology development IV: demonstration of polychromatic contrast in vacuum at 1.2 λ/D</td>
</tr>
<tr>
<td>9605 0K</td>
<td>Demonstrating broadband billion-to-one contrast with the Visible Nulling Coronagraph</td>
</tr>
<tr>
<td>9605 0L</td>
<td>Exoplanet coronagraph shaped pupil masks and laboratory scale star shade masks: design, fabrication and characterization</td>
</tr>
</tbody>
</table>

WAVEFRONT CONTROL AND SIGNAL EXTRACTION

<table>
<thead>
<tr>
<th>Session ID</th>
<th>Title</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>9605 0M</td>
<td>Active correction of aperture discontinuities (ACAD) for space telescope pupils: a parametric analysis</td>
<td>[9605-21]</td>
</tr>
<tr>
<td>9605 0N</td>
<td>Hybrid Lyot coronagraph for WFIRST-AFTA: coronagraph design and performance metrics</td>
<td>[9605-22]</td>
</tr>
<tr>
<td>9605 0O</td>
<td>Estimation of chromatic errors from broadband images for high contrast imaging</td>
<td>[9605-23]</td>
</tr>
<tr>
<td>9605 0P</td>
<td>Preliminary analysis of effect of random segment errors on coronagraph performance</td>
<td>[9605-24]</td>
</tr>
<tr>
<td>9605 0R</td>
<td>Blind source separation approaches for exoplanet signal extraction</td>
<td>[9605-26]</td>
</tr>
<tr>
<td>9605 0S</td>
<td>Data processing and algorithm development for the WFIRST-AFTA coronagraph: reduction of noise free simulated images, analysis and spectrum extraction with reference star differential imaging</td>
<td>[9605-27]</td>
</tr>
</tbody>
</table>

EXO-C PROBE STUDY

<table>
<thead>
<tr>
<th>Session ID</th>
<th>Title</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>9605 0T</td>
<td>Exo-C: a probe-scale space observatory for direct imaging and spectroscopy of extrasolar planetary systems (Invited Paper)</td>
<td>[9605-28]</td>
</tr>
<tr>
<td>9605 0V</td>
<td>PIAA coronagraph design for the Exo-C Mission concept</td>
<td>[9605-30]</td>
</tr>
</tbody>
</table>

EXO-S PROBE STUDY

<table>
<thead>
<tr>
<th>Session ID</th>
<th>Title</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>9605 0W</td>
<td>The Exo-S probe class starshade mission (Invited Paper)</td>
<td>[9605-31]</td>
</tr>
<tr>
<td>9605 0X</td>
<td>Optical instrumentation for science and formation flying with a starshade observatory</td>
<td>[9605-32]</td>
</tr>
<tr>
<td>9605 0Y</td>
<td>Design reference missions for the exoplanet starshade (Exo-S) probe-class study</td>
<td>[9605-33]</td>
</tr>
<tr>
<td>9605 0Z</td>
<td>Error budgets for the Exoplanet Starshade (Exo-S) probe-class mission study</td>
<td>[9605-34]</td>
</tr>
<tr>
<td>9605 11</td>
<td>Design of a laboratory testbed for external occulters at flight Fresnel numbers</td>
<td>[9605-84]</td>
</tr>
</tbody>
</table>
MISSION CONCEPTS AND TECHNOLOGIES

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>9605 12</td>
<td>Fully achromatic nulling interferometer (FANI) for high SNR exoplanet characterization</td>
<td>[9605-37]</td>
</tr>
<tr>
<td>9605 14</td>
<td>A pareto-optimal characterization of miniaturized distributed occulter/telescope systems</td>
<td>[9605-39]</td>
</tr>
<tr>
<td>9605 15</td>
<td>Maturing CCD photon-counting technology for space flight</td>
<td>[9605-75]</td>
</tr>
</tbody>
</table>

SPACE-BASED IMAGING AND TRANSIT

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>9605 17</td>
<td>How to directly image a habitable planet around Alpha Centauri with a ~30-45cm space telescope</td>
<td>[9605-41]</td>
</tr>
<tr>
<td>9605 18</td>
<td>Orbital Differential Imaging: a new high-contrast post-processing technique for direct imaging of exoplanets</td>
<td>[9605-42]</td>
</tr>
<tr>
<td>9605 19</td>
<td>The low-order wavefront sensor for the PICTURE-C mission</td>
<td>[9605-43]</td>
</tr>
<tr>
<td>9605 1A</td>
<td>End-to-end simulation of high-contrast imaging systems: methods and results for the PICTURE mission family</td>
<td>[9605-44]</td>
</tr>
<tr>
<td>9605 1B</td>
<td>The CHEOPS instrument on-ground calibration system</td>
<td>[9605-45]</td>
</tr>
</tbody>
</table>

GROUND-BASED INSTRUMENTS AND PROCESSING

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>9605 1C</td>
<td>The CHARIS IFS for high contrast imaging at Subaru</td>
<td>[9605-46]</td>
</tr>
<tr>
<td>9605 1D</td>
<td>First light with ALES: A 2-5 micron adaptive optics Integral Field Spectrograph for the LBT</td>
<td>[9605-47]</td>
</tr>
</tbody>
</table>

GROUND-BASED INSTRUMENTS AND PROCESSING II

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>9605 1G</td>
<td>Exoplanet science with the LBTI: instrument status and plans</td>
<td>[9605-50]</td>
</tr>
<tr>
<td>9605 1I</td>
<td>Optimized focal and pupil plane masks for vortex coronagraphs on telescopes with obstructed apertures</td>
<td>[9605-52]</td>
</tr>
<tr>
<td>9605 1J</td>
<td>A Mach-Zehnder interferometer based on orbital angular momentum for improved vortex coronagraph efficiency</td>
<td>[9605-53]</td>
</tr>
<tr>
<td>9605 1L</td>
<td>ExTrA: Exoplanets in transit and their atmospheres</td>
<td>[9605-55]</td>
</tr>
</tbody>
</table>
ARCHIVAL NICMOS DATA

9605 1P Archival Legacy Investigations of Circumstellar Environments (ALICE): Statistical assessment of point source detections [9605-59]

POSTER SESSION

9605 1Q Fluoride fiber thermal emission study for SPIRou @ CFHT [9605-60]
9605 1R A new fiber slit assembly for the FOCES spectrograph [9605-61]
9605 1T A white super-stable source for the metrology of astronomical photometers [9605-63]
9605 1U Design of the iLocater acquisition camera demonstration system [9605-64]
9605 1V Numerically designed phase-mask for stellar coronagraph [9605-65]
9605 1W Sparse aperture mask for low order wavefront sensing [9605-66]
9605 1Y High-contrast coronagraph performance in the presence of DM actuator defects [9605-68]
9605 22 Design of off-axis PIAACMC mirrors [9605-72]
9605 24 PISCES: high contrast integral field spectrograph simulations and data reduction pipeline [9605-74]
9605 25 Technological progress of a ferrofluid deformable mirror with tunable nominal optical power for high-contrast imaging [9605-76]
9605 28 Zernike wavefront sensor modeling development for LOWFS on WFIRST-AFTA [9605-79]
9605 29 Deconvolution of differential OTF (dOTF) to measure high-resolution wavefront structure [9605-80]
9605 2A UA wavefront control lab: design overview and implementation of new wavefront sensing techniques [9605-81]
9605 2B Adaptive optics self-calibration using differential OTF (dOTF) [9605-82]
9605 2C Control design for momentum-compensated fast steering mirror for WFIRST-AFTA coronagraph instrument [9605-83]
9605 2E Scaling relation for occulter manufacturing errors [9605-86]
9605 2F Astrometric accuracy of aperture making interferometry with JWST-NIRISS [9605-87]
9605 2G A method to directly image exoplanets in multi-star systems such as Alpha-Centauri [9605-88]
9605 2I Initial look at the coronagraph technology gaps for direct imaging of exo-earths [9605-90]
Authors

Numbers in the index correspond to the last two digits of the six-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first four digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Absil, Olivier, 1G, 1I, 1J
Aguilar, Jonathan, 1P
Almenara, J. M., 1L
Ames, William, 02
An, Xin, 0B
Artigou, Étienne, 2F
Azizé, Ali, 2C
Baba, Naoshi, 1V
Bailey, Vanessa, 1D, 1G
Balasubramanian, Kunjithapatham, 09, 0B, 0H, 0L
Bartos, Randall, 09
Bechter, Andrew, 1U
Bechter, Eric, 1U
Belikov, Ruslan, 0J, 0O, 0T, 0V, 17, 18, 22, 2G
Bendek, Eduardo, 0J, 17, 18, 22, 2G
Bender, Ralf, 1R
Bendek, Eduardo, 0J, 17, 18, 22, 2G
Bender, Ralf, 1R
Benford, Dominic, 1S
Bolcar, Matthew R., 0K
Boniffs, X., 1L
Bouyé, Marc, 1Q
Bradt, Timothy, 1C, 24
Brenner, Michael P., 0T
Brooks, Jack, 1U
Brown, Joshua, 19
Buccalassi, Anna, 1R
Brugarolas, Paul B., 0T, 2C
Bryden, Geoffrey, 0T
Burgon, Ross, 0E
Bush, Nathan, 0E
Cady, Eric, 0B, 0H, 0L, 0W, 0X, 0Z, 1Y
Cahoy, Kerri L., 0T, 19, 1A
Calvet, Rob, 02
Carlomagno, Brunella, 1I
Carrié, Alexis, 0A, 0I, 0M
Carr, Michael A., 1C
Cash, Webster, 0W
Cavanagh, Kathleen, 1W
Chakrabarti, Supriya, 0T, 19, 1A
Chang, Zensheu, 02
Chazelas, B., 1B, 1T
Choquet, Élodie, 0I, 0M, 1P
Clampin, Mark, 0K, 1S
Cleff, Isabel R., 25
Codona, Johan L., 29, 2A, 2B
Cook, Timothy A., 19, 1A
Crass, Jonathan, 1U
Crepp, Justin R., 1U
D’Amico, Simone, 1U
Defrère, Denis, 1D, 1G
Dekens, Frank G., 02, 0T
Delacroix, Christian, 1I, 1J
Delboulbé, A., 1L
Delfosse, X., 1L
Deline, A., 1B, 1T
Demers, Richard T., 02, 04, 0E, 0G
Diaz, Rosemary, 0B
Dickie, Matthew, 0L
Domagal-Goldman, Shawn, 0W, 0Y
Douglas, Ewan S., 19, 1A
Downey, E., 1G
Dubovitsky, Serge, 0T
Dunney, Oli, 1D, 1G
Echeverri, Daniel, 2S
Echternach, Pierre, 0L
Effinger, Robert T., 02, 0T
Egron, Sylvain, 0I
Eisner, J., 1G
E, Eric, 02
Esposito, S., 1G
Feautrier, P., 1L
Ferdos, Janan, 0G
Finn, Susanna C., 19, 1A
Forveille, T., 1L
Frank, Christian, 1R
Galvin, Michael, 1I, 1C
Glück, L., 1L
Gofas-Salas, Elena, 1P
Gong, Qian, 0G, 24
Gordon, Brian, 0N
Goullioud, Renaud, 04
Gow, Jason, 0E
Grammer, Bryan, 0G, 24
Greeley, Bradford, 0G, 24
Greenbaum, Alexandra, 2F
Groff, Tyler D., 07, 1C, 25
Grupp, Frank, 1R
Guyon, Olivier, 0J, 19, 1C, 22, 29, 2A, 2B
Habranken, S., 1J
Hagan, J. Brendan, 1P
Hall, David, 0E
Harding, Leon, 0E
Hayashi, Masahiko, 1C
Hen, Randall, 09
Helmbrecht, Michael A., 0K
Hénaul, François, 12
Henehan, Cate, 0W
Hewasawam, Kuravi, 19, 1A
Hicks, Brian A., 0K, 1S

Proc. of SPIE Vol. 9605 960501-7

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 14 Nov 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use
Hill, J. M., 1G
Hilton, George, 0G, 24
Hinz, Brian, 0T
Hix, Troy, 0J
Hoernk, Michael, 0E
Hoffmann, W. F., 1G
Holland, Andrew, 0E
Hopp, Ulrich, 1R
Hovland, Larry, 02
Howe, Glenn A., 19, 1A
Huby, Elsa, 11, 1J
Jarosik, Norman, 1C
Jocou, L., 1L
Jones, Laura, 02
Jordel, Douglas, 0E
Jovanovic, Nemanja, 1C
Karlsson, M., 1J
Kasdin, N. Jeremy, 07, 0A, 08, 0L, 0W, 11, 1C, 1W, 25, 2E
Kellermann, Hanna, 1R
Kenworthy, M., 1G
Kern, Brian, 09, 0B, 0G, 0L
Kern, P., 1L
Ketterer, Ryan, 1U
Kim, Ki-Won, 11
Kim, Sug-Whan, 11
Kim, Yunjong, 11
King, David, 1U
Kiss, Andrew, 0T
Knapp, Gillian, 1C
Knight, Justin M., 29, 2A, 2B
Koenig, Adam W., 14
Kouach, Driss, 1Q
Krist, John E., 04, 05, 09, 0N, 0T, 0V
Kuchner, Marc J., 0W, 1A
Kuhnert, Andreas, 0B
Lafrasse, S., 1L
Lajoie, Rachel, 01
Lang, Raymond, 09
Lang, Jared J., 0T
Lang-Bard, Florian, 1R
Leboulleux, Lucie, 01
Lesenring, Jarom, 1D, 1G
Lemmer, Aaron J., 25
Levecc, Olivier, 01
Leviton, Douglas B., 1C
Lewis, Nikole K., 1A
Limebe, Carl, 0X
Limbach, Mary Anne, 1C
Lisman, P. Douglas, 0W, 0Y, 0Z
Llop Sayson, Jorge, 0G, 24
Loc, Anthony, 02
Long, Chris A., 01
Loomis, Craig, 1C
Lozi, Julien, 0J, 17, 19
Lynch, Dana H., 0J
Lyon, Richard G., 0K, 15
Macintosh, Bruce, 05, 14
Magnard, Y., 1L
Males, Jared R., 17, 18
Mallick, Udayan, 0K, 15
Mandic, Milan, 2C
Marchen, Luis, 0Z
Martinan, Anne D., 19, 1A
Marley, Mark S., 0T
Martel, André, 2F
Martel, Jason, 19
Martin, Stefan R., 0W, 0X, 0Z
Marx, Catherine, 0G, 24
Maurel, D., 1L
Michaels, Darren, 0E
Micheau, Yoan, 1Q
Millan-Gabet, R., 1G
Miller, Jan J., 0K
Miller, Kelsey L., 29, 2A, 2B
Miller, Kevin H., 1C
Miura, Noriaki, 1V
Montoya, Manny, 1D, 1G
Moody, Dwight, 0N
Moore, Douglas, 09
Moore, James, 09
Morgan, Rhonda, 21
Moulin, T., 1L
Muller, Richard, 0L
Murakami, Naoshi, 1V
Murgas, F., 1L
Murray, Neil, 0E
N’Diaye, Mamadou, 01, 0M
Nelson, M., 1G
Nelson, Matt, 1D
Nemati, Bijan, 02, 05, 0B, 0E
Neville, Timothy, 02
Nissen, Joel, 0T
Noecker, Charley, 02
Norman, Colin, 0M
Oseas, Jeffrey M., 0T
Parisot, Jérôme, 1Q
Patterson, Keith, 09, 0B, 2C
Peddada, Pavan, 0E
Perrin, Marshall D., 0G, 0I, 0M, 0S, 1P, 24
Petrone, Peter III, 0K, 15
Pham, Hung, 02
Piron, Pierre, 1L, 1J
Pluzhnik, Eugene, 0J, 22
Poberezhskiy, Ilya, 09, 0B, 0L
Pong, Chris, 0T
Pueyo, Laurent, 0I, 0M, 0S, 1P
Conference Committee

Program Track Chair

Oswald H. W. Siegmund, University of California, Berkeley
(United States)

Conference Chair

Stuart Shaklan, Jet Propulsion Laboratory (United States)

Conference Program Committee

Olivier Guyon, Subaru Telescope, National Astronomical Observatory of Japan (United States) and Research Corporation of University of Hawaii (United States) and The University of Arizona (United States)
Lucas Labadie, University of Cologne (Germany)
Bruce A. Macintosh, Lawrence Livermore National Laboratory (United States)
Dimitri P. Mawet, California Institute of Technology (United States)
M. Charley Noecker, Jet Propulsion Laboratory (United States)
Rémi Soummer, Space Telescope Science Institute (United States)

Session Chairs

1 WFIRST/AFTA I
 M. Charley Noecker, Jet Propulsion Laboratory (United States)

2 WFIRST/AFTA II
 M. Charley Noecker, Jet Propulsion Laboratory (United States)

3 WFIRST/AFTA III
 Tyler D. Groff, Princeton University (United States)

4 High Contrast Laboratory Results
 Stuart Shaklan, Jet Propulsion Laboratory (United States)

5 Wavefront Control and Signal Extraction
 Dimitri Mawet, California Institute of Technology (United States)

6 Exo-C Probe Study
 Olivier Guyon, Subaru Telescope, National Astronomical Observatory of Japan (United States) and Research Corporation of University of Hawaii (United States) and The University of Arizona (United States)
7 Exo-S Probe Study
Bruce A. Macintosh, Stanford University (United States)

8 Mission Concepts and Technologies
Dimitri Mawet, California Institute of Technology (United States)

9 Space-Based Imaging and Transit
Tyler D. Groff, Princeton University (United States)

10 Ground-Based Instruments and Processing
Bruce A. Macintosh, Lawrence Livermore National Laboratory (United States)

11 Ground-Based Instruments and Processing II
Bruce A. Macintosh, Stanford University (United States)

12 Ground-Based Instruments and Processing III
Stuart Shaklan, Jet Propulsion Laboratory (United States)

13 Archival NICMOS Data
Stuart Shaklan, Jet Propulsion Laboratory (United States)