Advanced Biomedical and Clinical Diagnostic and Surgical Guidance Systems XIV

Tuan Vo-Dinh
Anita Mahadevan-Jansen
Warren S. Grundfest
Editors

14–16 February 2016
San Francisco, California, United States

Sponsored and Published by
SPIE
Contents

<table>
<thead>
<tr>
<th>#</th>
<th>Authors</th>
<th>Conference Committee</th>
</tr>
</thead>
<tbody>
<tr>
<td>v</td>
<td></td>
<td></td>
</tr>
<tr>
<td>vii</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FLUORESCENCE AND RAMAN DETECTION SYSTEMS I

<table>
<thead>
<tr>
<th>#</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9698 02</td>
<td>Time-resolved fluorescence spectroscopy for intraoperative assistance of thyroid surgery</td>
<td>[9698-1]</td>
</tr>
<tr>
<td>9698 03</td>
<td>Design and validation of a near-infrared fluorescence endoscope for detection of early esophageal malignancy using a targeted imaging probe</td>
<td>[9698-2]</td>
</tr>
</tbody>
</table>

FLUORESCENCE AND RAMAN DETECTION SYSTEMS II

<table>
<thead>
<tr>
<th>#</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9698 07</td>
<td>Optical fiber Raman-based spectroscopy for oral lesions characterization: a pilot study</td>
<td>[9698-6]</td>
</tr>
</tbody>
</table>

OPTICAL DETECTION AND SENSING TECHNOLOGIES

<table>
<thead>
<tr>
<th>#</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9698 0A</td>
<td>Optical elastic scattering for early label-free identification of clinical pathogens</td>
<td>[9698-9]</td>
</tr>
</tbody>
</table>

VISUALIZATION AND IMAGE-GUIDED SYSTEMS I

<table>
<thead>
<tr>
<th>#</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9698 0I</td>
<td>A Google Glass navigation system for ultrasound and fluorescence dual-mode image-guided surgery</td>
<td>[9698-17]</td>
</tr>
</tbody>
</table>

VISUALIZATION AND IMAGE-GUIDED SYSTEMS II

<table>
<thead>
<tr>
<th>#</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9698 0K</td>
<td>Image-guided cold atmosphere plasma (CAP) therapy for cutaneous wound</td>
<td>[9698-18]</td>
</tr>
</tbody>
</table>

NEAR INFRARED SPECTROSCOPY SENSING METHODS

<table>
<thead>
<tr>
<th>#</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9698 0X</td>
<td>Diagnosis potential of near infrared Mueller Matrix imaging for colonic adenocarcinoma</td>
<td>[9698-32]</td>
</tr>
</tbody>
</table>
IMAGING AND DETECTION METHODS

9698 10 The blood perfusion and NADH/FAD content combined analysis in patients with diabetes foot [9698-36]

POSTER SESSION

9698 12 A 2-axis polydimethylsiloxane (PDMS) based electromagnetic MEMS scanning mirror for optical coherence tomography [9698-39]

9698 16 A scalable correlator for multichannel diffuse correlation spectroscopy [9698-43]

9698 17 Raman spectroscopy and immunohistochemistry for schwannoma characterization: a case study [9698-44]

9698 19 Evaluation of motion compensation method for assessing the gastrointestinal motility using three dimensional endoscope [9698-46]

9698 1C A finger-free wrist-worn pulse oximeter for the monitoring of chronic obstructive pulmonary disease [9698-49]

9698 1D Development of single-channel stereoscopic video imaging modality for real-time retinal imaging [9698-37]

9698 1E Which blood oxygen can sensitively indicate shock severity? [9698-31]

9698 1F A novel method to estimate oxygen saturation of the internal jugular vein blood [9698-34]
Authors

Numbers in the index correspond to the last two digits of the six-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first four digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Abdulvapova, Zera N., 10
Bachmann, L., 02
Basilio, F. S., 02
Bohndiek, Sarah E., 03
Brandao, M. P., 02
Brindle, Kevin M., 03
Carvalho, Luis Felipe C. S., 07, 17
Chen, Jyh-Chern, 1C
Cheng, Cheng, 0K
Christian, James F., 16
Chu, Chang-Sheng, 1C
Chuang, Shuang-Chao, 1C
Chung, Lung Pin, 1C
Conti de Freitas, L. C., 02
das Chagas, Maurilio José, 17
di Pietro, Massimiliano, 03
Dinter, Jean-Marc, 0A
dos Santos, Laurita, 17
Dremin, Victor V., 10
Dunaev, Andrey V., 10
Fan, Chih-Hsun, 1C
Farkas, Dana, 16
Fernandez, Daniel E., 16
Ferreira, Isabelle, 07, 17
Fitzgerald, Rebecca C., 03
Fujinaga, Tetsuji, 19
Gai, Olivier, 0A
Galstyan, Gagik R., 10
Gan, QI., 0K
Gao, Yuan, 1E, 1F
Genuer, Valentín, 0A
Ha, Myungjin, 1D
Haddad, Marcelo, 17
Haleplian, K., 02
Hu, Chuanzheng, 0I
Huang, Zhiwei, 0X
Iijima, Hideki, 19
Ito, A. S., 02
Iwakura, R., 02
Jang, Seulki, 1D
Jin, Fan, 0K
Joseph, James, 03
Jung, Byungjo, 1D
Kido, Michiko, 19
Kim, Chulhong, 12
Kim, Jeeyun, 12
Kim, Jin Young, 12
Kim, Sehui, 12
Kitakawa, Dácio, 07
Kolodziejski, Noah J., 16
Krupatkin, Alexander I., 10
Lacot, Éric, 0A
Lee, Changho, 12
Lee, Sangyeob, 1D
Lee, Yeh Wen, 1C
Li, Jiahong, 0K
Li, Kai, 1E, 1F
Li, Ting, 1E, 1F
Li, Xiangxiang, 0K
Li, Yu-Tang, 1C
Lim, Geunbae, 12
Lin, Kan, 0X
Litvinova, Karina S., 10
Liu, Peng, 0I
Loddi, Vinicius, 17
Marcoux, Pierre, 0A
Martin, Airtón Abrahão, 07, 17
Martin, Edward W., Jr., 0I
Maurin, Max, 0A
McAdams, Daniel, 16
Méteau, Jérémy, 0A
Nagakura, Toshiaki, 19
Neto, Lazaro Pinto Medeiros, 07, 17
Neves, Andre A., 03
Novikova, Irina N., 10
Ohno, Yuko, 19
Oliveira, Inajara P., 07
Pan, Boan, 1E, 1F
Park, Jihoon, 1D
Pei, Jing, 0I
Podolsky, Matthew J., 16
Povoski, Stephen P., 0I
Radfar, Edalat, 1D
Rafailov, Edik U., 10
Rafailov, Ilya E., 10
Rangel, João Lucas, 07
Ren, Wenhui, 0K
Ruan, Zhensheng, 1E, 1F
Schultz, Emmanuel, 0A
Shao, Pengfei, 0I
Sidorov, Victor V., 10
Sokolovski, Sergei G., 10
Stapels, Christopher J., 16
Takahashi, Hideya, 19
Takehara, Tetsuo, 19
Ting, Yue, 0K
Tsujii, Masahiko, 19
Tweedle, Michael F., 0I
Wang, Benzhong, 0I
Wang, Dong, 0I
Wang, Jianfeng, 0X
Watabe, Kenji, 19
Waterhouse, Dale J., 03
Xu, Ronald X., 0I, 0K
Yamada, Kenji, 19
Ye, Jian, 0I
Yilmaz, Alper, 0I
Yoshimoto, Kayo, 19
Yu, Sungkon, 1D
Yu, Zelin, 0K
Yue, Jian, 0I
Zhang, Shiwu, 0K
Zhang, Zeshu, 0I
Zheng, Wei, 0X
Zherebtsov, Evgeny A., 10
Zherebtsova, Angelina I., 10
Conference Committee

Symposium Chairs

James G. Fujimoto, Massachusetts Institute of Technology (United States)
R. Rox Anderson, Wellman Center for Photomedicine, Massachusetts General Hospital (United States) and Harvard School of Medicine (United States)

Program Track Chairs

Tuan Vo-Dinh, Fitzpatrick Institute for Photonics, Duke University (United States)
Anita Mahadevan-Jansen, Vanderbilt University (United States)

Conference Chairs

Tuan Vo-Dinh, Fitzpatrick Institute for Photonics, Duke University (United States)
Anita Mahadevan-Jansen, Vanderbilt University (United States)
Warren S. Grundfest, University of California, Los Angeles (United States)

Conference Program Committee

Maurice C. Aalders, Forensic Technical Solutions (Netherlands)
Francesco Baldini, Istituto di Fisica Applicata “Nello Carrara” (Italy)
Jennifer K. Barton, The University of Arizona (United States)
Stephen A. Boppart, University of Illinois at Urbana-Champaign (United States)
Gerald Grant, Duke University (United States)
Daniel C. Gray, Lighthouse Imaging LLC (United States)
Cristina Kurachi, Universidad de São Paulo (Brazil)
Hong Liu, The University of Oklahoma (United States)
Laura Marcu, University of California, Davis (United States)
Mary-Ann Mycek, University of Michigan (United States)
Jianan Y. Qu, Hong Kong University of Science and Technology (Hong Kong, China)
Urs Utzinger, The University of Arizona (United States)
Session Chairs

1 Fluorescence and Raman Detection Systems I
 Tuan Vo-Dinh, Fitzpatrick Institute for Photonics, Duke University (United States)

2 Fluorescence and Raman Detection Systems II
 Tuan Vo-Dinh, Fitzpatrick Institute for Photonics, Duke University (United States)

3 Optical Detection and Sensing Technologies
 Cristina Kurachi, Universidad de São Paulo (Brazil)

4 Microscopy and Imaging Technologies
 Laura Marcu, University of California, Davis (United States)
 Mary-Ann Mycek, University of Michigan (United States)

5 Visualization and Image-Guided Systems I
 Anita Mahadevan-Jansen, Vanderbilt University (United States)

6 Visualization and Image-Guided Systems II
 Warren S. Grundfest, University of California, Los Angeles (United States)
 Anita Mahadevan-Jansen, Vanderbilt University (United States)

7 Optical Coherence Techniques
 Stephen A. Boppart, University of Illinois at Urbana-Champaign (United States)
 Jennifer K. Barton, The University of Arizona (United States)

8 Optical Diagnostic Devices
 Francesco Baldini, Istituto di Fisica Applicata “Nello Carrara” (Italy)

9 Near Infrared Spectroscopy Sensing Methods
 Zhiwei Huang, National University of Singapore (Singapore)

10 Imaging and Detection Methods
 Quan Liu, Nanyang Technological University (Singapore)