Front Matter: Volume 9700
Design and Quality for Biomedical Technologies IX

Ramesh Raghavachari
Rongguang Liang
Editors

13–14 February 2016
San Francisco, California, United States

Sponsored and Published by
SPIE
Contents

<table>
<thead>
<tr>
<th>SESSION 1</th>
<th>PHANTOM DEVELOPMENT AND CHARACTERIZATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>9700 02</td>
<td>National Institute of Standards and Technology measurement service of the optical properties of biomedical phantoms: current status (Invited Paper) [9700-1]</td>
</tr>
<tr>
<td>9700 03</td>
<td>Development of breast cancer tissue phantoms for terahertz imaging [9700-2]</td>
</tr>
<tr>
<td>9700 04</td>
<td>Characterization of homogeneous tissue phantoms for performance tests in diffuse optics [9700-4]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SESSION 2</th>
<th>PRINTED PHANTOMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>9700 06</td>
<td>Performance evaluation of CCD- and mobile-phone-based near-infrared fluorescence imaging systems with molded and 3D-printed phantoms [9700-5]</td>
</tr>
<tr>
<td>9700 08</td>
<td>Customized three-dimensional printed optical phantoms with user defined absorption and scattering [9700-7]</td>
</tr>
<tr>
<td>9700 09</td>
<td>Freeform fabrication of tissue-simulating phantoms by combining three-dimensional printing and casting [9700-8]</td>
</tr>
<tr>
<td>9700 0A</td>
<td>Optical characterization of tissue mimicking phantoms by a vertical double integrating sphere system [9700-9]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SESSION 3</th>
<th>QUALITY OF BIOMEDICAL TECHNOLOGIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>9700 0B</td>
<td>Eye safety analysis for non-uniform retinal scanning laser trajectories [9700-10]</td>
</tr>
<tr>
<td>9700 0D</td>
<td>Quantitative assessment of hyperspectral imaging in detection of plasmonic nanoparticles: a modified contrast-detail analysis approach [9700-12]</td>
</tr>
<tr>
<td>9700 0E</td>
<td>The component validation of direct diode 488nm lasers in BD Accuri C6 flow cytometers [9700-13]</td>
</tr>
<tr>
<td>9700 0F</td>
<td>Dynamic thermal effects of epidermal melanin and plasmonic nanoparticles during photoacoustic breast imaging [9700-14]</td>
</tr>
<tr>
<td>SESSION 4</td>
<td>PHANTOM TECHNOLOGIES</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>9700 0I</td>
<td>Novel organosilicon phantoms as testing material for photoacoustic imaging [9700-18]</td>
</tr>
<tr>
<td>9700 0J</td>
<td>Margin assessment of three-dimensional breast cancer phantoms using terahertz imaging [9700-3]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SESSION 5</th>
<th>BIOMEDICAL IMAGING TECHNOLOGIES I</th>
</tr>
</thead>
<tbody>
<tr>
<td>9700 0O</td>
<td>Spatially resolved diffuse reflectance spectroscopy of two-layer turbid media by densely packed multi-pixel photodiode reflectance probe [9700-24]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SESSION 6</th>
<th>DESIGN OF BIOMEDICAL IMAGING TECHNOLOGIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>9700 0Q</td>
<td>Fiber optic microprobes with rare-earth-based phosphor tips for proton beam characterization [9700-25]</td>
</tr>
<tr>
<td>9700 0R</td>
<td>A wearable infrared video pupillography with multi-stimulation of consistent illumination for binocular pupil response [9700-26]</td>
</tr>
<tr>
<td>9700 0S</td>
<td>Illumination-parameter adjustable and illumination-distribution visible LED helmet for low-level light therapy on brain injury [9700-27]</td>
</tr>
<tr>
<td>9700 0T</td>
<td>Modelling and design of modified Wollaston prisms and the application in differential interference contrast microscopy [9700-28]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SESSION 7</th>
<th>BIOMEDICAL IMAGING TECHNOLOGIES II</th>
</tr>
</thead>
<tbody>
<tr>
<td>9700 0W</td>
<td>LED induced Autofluorescence (LIAF) imager with eight multi-filters for oral cancer diagnosis [9700-31]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SESSION 8</th>
<th>TRANSLATIONAL TECHNOLOGY</th>
</tr>
</thead>
<tbody>
<tr>
<td>9700 13</td>
<td>Spectral domain optical coherence tomography with dual-balanced detection [9700-37]</td>
</tr>
<tr>
<td>9700 14</td>
<td>Fast full 4x4 Mueller polarimeter for endoscopic applications [9700-39]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>POSTER SESSION</th>
</tr>
</thead>
<tbody>
<tr>
<td>9700 15</td>
</tr>
<tr>
<td>9700 16</td>
</tr>
</tbody>
</table>
Validation of MTF measurement for CBCT system using Monte Carlo simulations [9700-42]

Non-contact ECG monitoring [9700-43]

Multi-wavelength fluorescence tomography [9700-45]

A modified laminar optical tomography system with small dip-angle and the initial validation [9700-46]

Single-channel stereoscopic ophthalmology microscope based on TRD [9700-38]
Authors

Numbers in the index correspond to the last two digits of the six-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first four digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Adler, Brent, 09
Allen, David W., 02, 0A
Ancora, Daniele, 15
Armanetti, Paolo, 01
Avigo, Cinzia, 01
Besner, Gail, 09
Bo, En, 13
Bowman, Tyler, 03, 0J
Bradu, Adrian, 14
Cavigli, Lucia, 01
Cecchini, Marco, 0I
Chen, Si, 13
Chen, Wei P., 0E
Chen, Xiao, 0S
Chen, Xueying, 1B
Chen, Yu, 06, 0D
Cheng, Nai-Lun, 0W
Chiang, Huihua K., 1A
Chu, Jiaru, 0A
Cooksey, Catherine C., 02
Cromeens, Barrett, 09
Dallmann, Hans-Georg, 0B
Darafsheh, Arash, 0Q
Di Lascio, Nicole, 0I
Diep, Phuong, 08
Doinay, Derek, 0Q
Dong, Erbao, 09, 0A
Era, Hideo, 04
El-Shenawee, Magda, 03, 0J
Epishev, Vitaly V., 18
Erlkh, Vadim V., 18
Erramilli, Shyamsunder, 08
Faita, Francesco, 0I
Finlay, Jarod C., 0Q
Funane, Tsukasa, 04
Gao, Feng, 16, 17, 1B
Gao, Yuan, 0S
Ghassemi, Pejman, 06, 0F
Greening, Gage, 0C
Grüger, Heinrich, 0B
Guisez, Gultekin, 1A
Guo, Yuwei, 0A
Ha, Myungjin, 1C
Han, Yilin, 09, 0A
Hao, Ting, 17
Hoehne, Brad, 09
Huang, Ting-Wei, 0R, 0W
Hwang, Jeeseong, 02
Istfan, Rameef, 08
Jang, Seulki, 1C
Jia, Mengyu, 1B
Jia, Qiumin, 0A
Jokerst, Nan M., 0O
Jung, Byungjo, 1C
Kassaee, Alireza, 0Q
Keller, Andrei V., 18
Kiguchi, Masashi, 04
Kim, Chang-Seok, 1A
Knobbe, Jens, 0B
Ko, Mei Lan, 0R
Kodkin, Vladimir L., 18
Kusmic, Claudia, 0I
Kwong, Tiffany C., 1A
Lee, Sangyeeob, 1C
Lemaitre, Paul, 02, 0A
Levine, Zachary H., 02
Li, Jiao, 1B
Li, Ting, 0S
Liu, Bin, 09
Liu, Guangli, 0A
Liu, Linbo, 13
Liu, Wendong, 09
Liu, Xinyu, 13
Lo, Justine, 08
Lo, Pei-An, 1A
Luo, Ningyi D., 0E
Luo, Yuejiai, 13
Ma, Wenjuan, 1B
Macdonald, Rainer, 04
Mang, Ou-Yang, 0R, 0W
Masriulo, Cecilia, 0I
Menichetti, Luca, 0I
Muldoon, Timothy J., 00
Nouizi, Farouk, 1A
Pannem, Sanjana, 08
Park, Jihoon, 1C
Pfeffer, T. Joshua, 06, 0D, 0F
Pifferi, Antonio, 04
Pini, Roberto, 0I
Pintar, Adam, 02
Podoleanu, Adrian, 14
Pügner, Tino, 08
Qi, Jin, 1B
Radfar, Edalat, 1C
Ratto, Fulvio, 0I
Ray, William, 09
Reinig, Peter, 0B
Ripoll, Jorge, 15
Rivet, Sylvain, 14
Roblyer, Darren M., 08
Schelinski, Uwe, 0B
Senlik, Ozlem, 00
Shen, Shuwei , 09, 0A
Smirnov, Alexey S., 18
Snyder, Michael, 08
Stueber, Gabriella, 08
Sweer, Jordan, 08
Tabassum, Syeda, 08
Taleei, Reza, 0Q
Taubert, Dieter Richard, 04
Tian, Jing, 1B
Torricelli, Alessandro, 04
Tsai, Ming-Hsui, 0W
Tsai, Yi-Chun, 0R
Wabnitz, Heidrun, 04
Walter, Alec, 03, 0J
Wang, Bingyuan, 16
Wang, Bohan, 06
Wang, Haili, 09
Wang, Jianling, 06, 0D
Wang, Nanshuo, 13
Wang, Pengbo, 0S
Wang, Quanzeng, 06, 0F
Wang, Shuang, 1B
Wang, Xianghong, 13
Wang, Yihan, 16
Woittennek, Franziska, 0B
Wu, Junjie, 08
Wyrowski, Frank, 0T
Xu, Ronald, 09, 0A
Yu, Sungkon, 1C
Zacharakis, Giannis, 15
Zacharopoulos, Athanasios, 15
Zhang, Site, 0T
Zhang, Yanci, 16
Zhao, Gang, 0A
Zhao, Huijuan, 16, 17, 1B
Zhao, Yanyu, 08
Zhao, Zhuhua , 09
Zhong, Huiying, 0T
Zhou, Xinming, 0A
Zhou, Zhongxing, 17
Conference Committee

Symposium Chairs

James G. Fujimoto, Massachusetts Institute of Technology (United States)
R. Rox Anderson, Wellman Center for Photomedicine, Massachusetts General Hospital (United States) and Harvard School of Medicine (United States)

Program Track Chairs

Tuan Vo-Dinh, Fitzpatrick Institute for Photonics, Duke University (United States)
Anita Mahadevan-Jansen, Vanderbilt University (United States)

Conference Chairs

Ramesh Raghavachari, U.S. Food and Drug Administration (United States)
Rongguang Liang, College of Optical Sciences, The University of Arizona (United States)

Conference Co-chair

T. Joshua Pfefer, U.S. Food and Drug Administration (United States)

Conference Program Committee

David W. Allen, National Institute of Standards and Technology (United States)
Anthony J. Durkin, Beckman Laser Institute and Medical Clinic (United States)
Jeeseong Hwang, National Institute of Standards and Technology (United States)
Stephen P. Morgan, The University of Nottingham (United Kingdom)
Robert J. Nordstrom, National Institutes of Health (United States)
Jannick P. Rolland, University of Rochester (United States)
Eric J. Seibel, University of Washington (United States)
Behrouz Shabestari, National Institutes of Health (United States)
Kenji Taira, Olympus Corporation (United States)
Tomasz S. Tkaczyk, Rice University (United States)
Gracie Vargas, The University of Texas Medical Branch (United States)
Rudolf M. Verdaasdonk, Vrije University Medical Center (Netherlands)
Session Chairs

1 Phantom Development and Characterization
 Ramesh Raghavachari, U.S. Food and Drug Administration (United States)
 Anthony J. Durkin, Beckman Laser Institute and Medical Clinic (United States)

2 Printed Phantoms
 T. Joshua Pfefer, U.S. Food and Drug Administration (United States)

3 Quality of Biomedical Technologies
 William C. Vogt, U.S. Food and Drug Administration (United States)

4 Phantom Technologies
 David W. Allen, National Institute of Standards and Technology (United States)

5 Biomedical Imaging Technologies I
 Gracie Vargas, The University of Texas Medical Branch (United States)

6 Design of Biomedical Imaging Technologies
 Ramesh Raghavachari, U.S. Food and Drug Administration (United States)

7 Biomedical Imaging Technologies II
 Behrouz Shabestari, National Institutes of Health (United States)

8 Translational Technology
 Rongguang Liang, College of Optical Sciences, The University of Arizona (United States)
 Gracie Vargas, The University of Texas Medical Branch (United States)