Slow Light, Fast Light, and Opto-Atomic Precision Metrology IX

Selim M. Shahriar
Jacob Scheuer
Editors

15–18 February 2016
San Francisco, California, United States

Sponsored and Published by
SPIE
Contents

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>vi</td>
<td>Authors</td>
</tr>
<tr>
<td>vii</td>
<td>Conference Committee</td>
</tr>
</tbody>
</table>

ATOMIC CLOCKS, MAGNETOMETERS, AND RELATED TECHNOLOGY I

<table>
<thead>
<tr>
<th>Proc.</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>976303</td>
<td>Thermal design of high temperature alkaline-earth vapor cells [9763-2]</td>
</tr>
<tr>
<td>976304</td>
<td>A compact, high-performance all optical atomic clock based on telecom lasers (Invited Paper) [9763-3]</td>
</tr>
</tbody>
</table>

ATOMIC CLOCKS, MAGNETOMETERS, AND RELATED TECHNOLOGY II

<table>
<thead>
<tr>
<th>Proc.</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>976308</td>
<td>Optical system design for femtosecond-level synchronization of clocks (Invited Paper) [9763-7]</td>
</tr>
<tr>
<td>97630A</td>
<td>Effect of electromagnetically induced transparency delay generated by dynamic coherent population trapping in Rb vapour [9763-9]</td>
</tr>
</tbody>
</table>

ATOMIC CLOCKS, MAGNETOMETERS, AND RELATED TECHNOLOGY III

<table>
<thead>
<tr>
<th>Proc.</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>97630D</td>
<td>Efficient polarization of high-angular-momentum systems (Invited Paper) [9763-12]</td>
</tr>
<tr>
<td>97630F</td>
<td>Ultra-high resolution spectroscopy of optical frequency combs (Invited Paper) [9763-14]</td>
</tr>
<tr>
<td>97630G</td>
<td>Effects of coherent population trapping in vibrational levels on group velocity and Raman scattering (Invited Paper) [9763-11]</td>
</tr>
</tbody>
</table>

QUANTUM INFORMATION PROCESSING, QUANTUM OPTICS, AND QUANTUM MEMORY

<table>
<thead>
<tr>
<th>Proc.</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>97630P</td>
<td>Experimental demonstration of spinor slow light (Invited Paper) [9763-23]</td>
</tr>
</tbody>
</table>

FAST LIGHT GENERATION AND SENSING APPLICATIONS

<table>
<thead>
<tr>
<th>Proc.</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>97630V</td>
<td>Long-distance superluminal propagation in optical fibers: recent advances (Invited Paper) [9763-29]</td>
</tr>
<tr>
<td>97630W</td>
<td>Experimental study of induced transparency or absorption and slow or fast light using orthogonally polarized whispering gallery modes of a single microresonator [9763-30]</td>
</tr>
</tbody>
</table>
PLASMONICS, METAMATERIALS, AND GRAPHENE I

- 9763 0Y Interplay of nonlocal response, damping, and low group velocity in surface-plasmon polaritons (Invited Paper) [9763-32]
- 9763 0Z Slow plasmons in grating cavities (Invited Paper) [9763-33]

FIBER OPTIC AND HOLOGRAPHIC TECHNIQUES, AND SENSORS

- 9763 17 Measuring attostrains in a slow-light fiber Bragg grating (Invited Paper) [9763-41]
- 9763 18 Tunable photonic crystals by holographic optical tweezers [9763-42]
- 9763 1A Adaptive holography for optical sensing applications (Invited Paper) [9763-44]

WAVEGUIDES, MICRORESONATORS, NANOPHOTONICS, AND PHOTONIC CRYSTALS II

- 9763 1C Co- and counter-propagating slow light systems (Invited Paper) [9763-45]
- 9763 1D Tunable optical delay line based on micro-ring resonators (Invited Paper) [9763-46]
- 9763 1E Comparison of methods for achieving induced transparency or absorption with pulse delay or advancement in a single microresonator (Invited Paper) [9763-47]

EMERGING CONCEPTS AND EFFECTS IN SLOW LIGHT, FAST LIGHT, AND METROLOGY II

- 9763 1L Signal revivals in pulsed Rydberg four-wave mixing in thermal ensembles (Invited Paper) [9763-54]
- 9763 1M Scanning-free characterization of local Brillouin spectra based on transient analysis (Invited Paper) [9763-55]

THEORETICAL DEVELOPMENTS IN SLOW AND FAST LIGHT

- 9763 1N Light pulse slowing down using backward-wave four-wave mixing (Invited Paper) [9763-56]
- 9763 1P Classical, semi-classical, and quantized-field descriptions of light propagation in general non-local and non-stationary dispersive and absorbing media (Invited Paper) [9763-58]
- 9763 1Q Influence of nanorod absorption spectrum width on superluminality effect for laser pulse propagation [9763-59]
Authors

Numbers in the index correspond to the last two digits of the six-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first four digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Andryushkov, Valeriy, 0A
Armstrong, Jordan L., 03
Arora, Arushi, 17
Auzinsh, Marcis, 0D
Aydinli, Atilla, 02
Baba, T., 1C
Balci, Sinan, 02
Basalaev, Maxim, 0A
Baumann, Esther, 08
Bergeron, Hugo, 08
Bernier, Martin, 17
Bortolozzo, U., 1A
Budker, Dmitry, 0D
Bui, Khoa V., 0W
Burke, John H., 04
Cermak, Michael, 08
Chang, Kao-Fang, 0P
Chen, Yi-Hsin, 1L
Cho, Hung-Wen, 0P
Coddington, Ian, 08
Deschênes, Jean-Daniel, 08
Digonnet, Michel, 17
Dolfi, D., 1A
Erickson, Christopher J., 03
Giorgetta, Fabrizio R., 08
Huignard, J. P., 1A
Jacobs, Verne L., 1P
Juzeliūnas, Gediminas, 0P
Karademir, Erbugul, 02
Khripunov, Sergey, 0A
Kobtsev, Sergey, 0A
Kocabas, Coskun, 02
Kondo, K., 1C
Kudrjasov, Vyacheslav, 0P
Lee, Chin-Yuan, 0P
Lee, Meng-Jung, 0P
Lemke, Nathan D., 03, 04
Li, Hui, 1D
Liu, Jinnmei, 0V
Löw, Robert, 1L
Lysak, Tatiana M., 1Q
Martin, Kyle W., 03, 04
Mathey, Pierre, 1N
Molin, S., 1A
Mortensen, N. Asger, 0Y
Newbury, Nathan R., 08
Nouchi, P., 1A
Peigné, A., 1A
Pflau, Tilman, 1L
Phelps, Gretchen R., 04
Popkov, Ivan, 0A
Preter, Eyal, 1M
Preußler, Stefan, 0F
Pustelny, Symon, 0D
Qin, Minglei, 0V
Radnatarov, Daba, 0A
Raizen, Mark, 0D
Raza, Søren, 0Y
Residori, S., 1A
Ripka, Fabian, 1L
Rochester, Simon, 0D
Roichman, Yael, 18
Rostovtsev, Yuri V., 0G
Ruseckas, Julus, 0P
Scheuer, Jacob, 18
Schneider, Thomas, 0F
Schcherbin, Konstantin, 1N
Sinclair, Laura C., 08
Singh, Pooja, 0G
Skolianos, George, 17
Swann, William C., 08
Szymański, Konrad, 0D
Taichenachev, Alexey, 0A
Trofimov, Vyacheslav A., 1Q
Wu, Yongfeng, 1D
Yevnin, Maya, 18
Yu, Changgui, 1D
Yu, Ite A., 0P
Yuan, Ping, 1D
Yudin, Valeriy, 0A
Zadok, Avi, 1M
Zhan, Li, 0V
Zhang, Chunyu, 1D
Zhang, Liang, 0V
Zhang, Tuo, 1D
Zhang, Yundong, 1D
Conference Committee

Symposium Chairs
 Jean-Emmanuel Broquin, IMEP-LAHC (France)
 Shibin Jiang, AdValue Photonics, Inc. (United States)

Symposium Co-chairs
 David L. Andrews, University of East Anglia (United Kingdom)
 Alexei L. Glebov, OptiGrate Corporation (United States)

Program Track Chair
 Zameer U. Hasan, Temple University (United States)

Conference Chairs
 Selim M. Shahriar, Northwestern University (United States)
 Jacob Scheuer, Tel Aviv University (Israel)

Conference Program Committee
 John H. Burke, Air Force Research Laboratory (United States)
 Shanhui Fan, Stanford University (United States)
 Daniel Joseph Gauthier, Duke University (United States)
 Kohzo Hakuta, The University of Electro-Communications (Japan)
 Ortwin Hess, Imperial College London (United Kingdom)
 John C. Howell, University of Rochester (United States)
 Jacob B. Khurgin, Johns Hopkins University (United States)
 Uriel Levy, The Hebrew University of Jerusalem (Israel)
 Frank A. Narducci, Naval Air Systems Command (United States)
 Irina Novikova, The College of William & Mary (United States)
 Gour S. Pati, Delaware State University (United States)
 Stefania Residori, Institut Non Linéaire de Nice Sophia Antipolis (France)
 Yuri Rostovtsev, University of North Texas (United States)
 David D. Smith, NASA Marshall Space Flight Center (United States)
 Yanhong Xiao, Fudan University (China)

Session Chairs
 1 Atomic Clocks, Magnetometers, and Related Technology I
 Nathan Lemke, Air Force Research Laboratory (United States)
2 Atomic Clocks, Magnetometers, and Related Technology II
Elizabeth Donley, National Institute of Standards and Technology (United States)

3 Atomic Clocks, Magnetometers, and Related Technology III
Laura C. Sinclair, National Institute of Science and Technology (United States)

4 Atomic Interferometry and Spin Squeezing
Vladan Vuletic, Massachusetts Institute of Technology (United States)

5 Quantum Information Processing, Quantum Optics, and Quantum Memory
Philippe Bouyer, Laboratoire Photonique, Numérique et Nanosciences (France)

6 Fast Light Generation and Sensing Applications
Ite A. Yu, National Tsing Hua University (China)

7 Plasmonics, Metamaterials, and Graphene I
Yonatan Siran, Ben-Gurion University of the Negev (Israel)

8 Plasmonics, Metamaterials, and Graphene II
Uriel Levy, The Hebrew University of Jerusalem (Israel)

9 Waveguides, Microresonators, Nanophotonics, and Photonic Crystals I
Meir Orenstein, Technion-Israel Institute of Technology (Israel)

10 Fiber Optic and Holographic Techniques, and Sensors
Gadi Eisenstein, Technion-Israel Institute of Technology (Israel)

11 Waveguides, Microresonators, Nanophotonics, and Photonic Crystals II
Jacob Scheuer, Tel Aviv University (Israel)

12 Emerging Concepts and Effects in Slow Light, Fast Light, and Metrology I
David D. Smith, NASA Marshall Space Flight Center (United States)

13 Emerging Concepts and Effects in Slow Light, Fast Light, and Metrology II
Michelle L. Povinelli, The University of Southern California (United States)

14 Theoretical Developments in Slow and Fast Light
Robert W. Boyd, University of Ottawa (Canada)