Contents

<table>
<thead>
<tr>
<th></th>
<th>Authors</th>
<th>Conference Committee</th>
</tr>
</thead>
<tbody>
<tr>
<td>xv</td>
<td></td>
<td></td>
</tr>
<tr>
<td>xxxiii</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Part One

SOLAR/UV I

<table>
<thead>
<tr>
<th>9905 02</th>
<th>SMILE: a joint ESA/CAS mission to investigate the interaction between the solar wind and Earth’s magnetosphere [9905-1]</th>
</tr>
</thead>
<tbody>
<tr>
<td>9905 03</td>
<td>The Solar Ultraviolet Imaging Telescope onboard Aditya-L1 [9905-2]</td>
</tr>
<tr>
<td>9905 04</td>
<td>World Space Observatory Ultraviolet mission: status 2016 [9905-3]</td>
</tr>
<tr>
<td>9905 05</td>
<td>Galaxy evolution spectroscopic explorer: scientific rationale [9905-4]</td>
</tr>
<tr>
<td>9905 06</td>
<td>CHISL: the combined high-resolution and imaging spectrograph for the LUVOIR surveyor [9905-5]</td>
</tr>
</tbody>
</table>

SOLAR/UV II

<table>
<thead>
<tr>
<th>9905 07</th>
<th>Optical design and optical properties of a VUV spectrographic imager for ICON mission [9905-6]</th>
</tr>
</thead>
<tbody>
<tr>
<td>9905 08</td>
<td>Chromospheric LAyer SpectroPolarimeter (CLASP2) [9905-7]</td>
</tr>
<tr>
<td>9905 09</td>
<td>The Miniature X-ray Solar Spectrometer (MinXSS) CubeSats: spectrometer characterization techniques, spectrometer capabilities, and solar science objectives [9905-8]</td>
</tr>
<tr>
<td>9905 0A</td>
<td>SISTINE: a pathfinder for FUV imaging spectroscopy on future NASA astrophysics missions [9905-9]</td>
</tr>
</tbody>
</table>

SOLAR/UV III

<table>
<thead>
<tr>
<th>9905 0D</th>
<th>Ultraviolet imaging detectors for the GOLD mission [9905-12]</th>
</tr>
</thead>
<tbody>
<tr>
<td>9905 0E</td>
<td>The FOXSI solar sounding rocket campaigns [9905-13]</td>
</tr>
<tr>
<td>9905 0F</td>
<td>Flight production of Caliste-SO: the hard x-ray spectrometers for solar orbiter/STIX instrument [9905-10]</td>
</tr>
</tbody>
</table>
DETECTOR I

<table>
<thead>
<tr>
<th>9905 OJ</th>
<th>Development of a 32-detector CdTe matrix for the SVOM ECLAIRs x/gamma camera: tests results of first flight models [9905-125]</th>
</tr>
</thead>
<tbody>
<tr>
<td>9905 OL</td>
<td>Fast event recognition for x-ray silicon imagers [9905-19]</td>
</tr>
<tr>
<td>9905 OM</td>
<td>Development of wide-field low-energy x-ray imaging detectors for HiZ-GUNDAM [9905-20]</td>
</tr>
</tbody>
</table>

DETECTOR II

<table>
<thead>
<tr>
<th>9905 OO</th>
<th>Front-end ASICs for high-energy astrophysics in space (Invited Paper) [9905-21]</th>
</tr>
</thead>
<tbody>
<tr>
<td>9905 OQ</td>
<td>Development of x-ray microcalorimeter imaging spectrometers for the X-ray Surveyor mission concept [9905-23]</td>
</tr>
<tr>
<td>9905 OS</td>
<td>Toward large μ-calorimeters x-ray matrices based on metal-insulator sensors and HEMTs/SiGe cryo-electronics [9905-25]</td>
</tr>
</tbody>
</table>

ASTRO-H I

<table>
<thead>
<tr>
<th>9905 OU</th>
<th>The ASTRO-H (Hitomi) x-ray astronomy satellite [9905-27]</th>
</tr>
</thead>
<tbody>
<tr>
<td>9905 OW</td>
<td>In-flight performance of the Soft X-ray Spectrometer detector system on ASTRO-H [9905-29]</td>
</tr>
<tr>
<td>9905 OX</td>
<td>Vibration isolation system for cryocoolers of Soft X-ray Spectrometer (SXS) onboard ASTRO-H (Hitomi) [9905-30]</td>
</tr>
<tr>
<td>9905 OY</td>
<td>In-orbit operation of the ASTRO-H SXS [9905-31]</td>
</tr>
<tr>
<td>9905 OZ</td>
<td>First peek of ASTRO-H Soft X-ray Telescope (SXT) in-orbit performance [9905-32]</td>
</tr>
</tbody>
</table>

ASTRO-H II

<table>
<thead>
<tr>
<th>9905 10</th>
<th>Soft x-ray imager (SXI) onboard ASTRO-H [9905-33]</th>
</tr>
</thead>
<tbody>
<tr>
<td>9905 11</td>
<td>The hard x-ray imager (HXI) onboard ASTRO-H [9905-34]</td>
</tr>
<tr>
<td>9905 12</td>
<td>Performance of ASTRO-H hard x-ray telescope (HXT) [9905-35]</td>
</tr>
<tr>
<td>9905 13</td>
<td>The soft gamma-ray detector (SGD) onboard ASTRO-H [9905-36]</td>
</tr>
<tr>
<td>9905 14</td>
<td>ASTRO-H data analysis, processing and archive [9905-37]</td>
</tr>
</tbody>
</table>

POLARIZATION

<p>| 9905 17 | The Imaging X-ray Polarimetry Explorer (IXPE) [9905-40] |</p>
<table>
<thead>
<tr>
<th>9905 1A</th>
<th>Hard x-ray imaging polarimeter for PolariS [9905-43]</th>
</tr>
</thead>
<tbody>
<tr>
<td>9905 1D</td>
<td>Large Area X-ray Proportional Counter (LAXPC) instrument onboard ASTROSAT [9905-45]</td>
</tr>
<tr>
<td>9905 1E</td>
<td>In-orbit performance of SXT aboard AstroSat [9905-46]</td>
</tr>
<tr>
<td>9905 1F</td>
<td>In-orbit performance of UVIT on ASTROSAT [9905-47]</td>
</tr>
<tr>
<td>9905 1G</td>
<td>In-orbit performance AstroSat CZTI [9905-48]</td>
</tr>
</tbody>
</table>

NICER

<table>
<thead>
<tr>
<th>9905 1H</th>
<th>The Neutron star Interior Composition Explorer (NICER): design and development [9905-49]</th>
</tr>
</thead>
<tbody>
<tr>
<td>9905 1I</td>
<td>NICER instrument detector subsystem: description and performance [9905-50]</td>
</tr>
</tbody>
</table>

SRG

<table>
<thead>
<tr>
<th>9905 1J</th>
<th>Status of ART-XC/SRG instrument [9905-51]</th>
</tr>
</thead>
<tbody>
<tr>
<td>9905 1K</td>
<td>eROSITA on SRG [9905-52]</td>
</tr>
</tbody>
</table>

NEW MISSIONS

<table>
<thead>
<tr>
<th>9905 1L</th>
<th>Localization algorithms for micro-channel x-ray telescope on board SVOM space mission [9905-53]</th>
</tr>
</thead>
<tbody>
<tr>
<td>9905 1M</td>
<td>The Transient High Energy Sky and Early Universe Surveyor (THESEUS) [9905-54]</td>
</tr>
<tr>
<td>9905 1N</td>
<td>DIOS: the dark baryon exploring mission [9905-55]</td>
</tr>
<tr>
<td>9905 1R</td>
<td>The LOFT mission concept: a status update [9905-59]</td>
</tr>
</tbody>
</table>

OPTICS I

<table>
<thead>
<tr>
<th>9905 1S</th>
<th>Lightweight and high-resolution single crystal silicon optics for x-ray astronomy [9905-60]</th>
</tr>
</thead>
<tbody>
<tr>
<td>9905 1V</td>
<td>Development of a direct fabrication technique for full-shell x-ray optics [9905-63]</td>
</tr>
<tr>
<td>9905 1X</td>
<td>Critical-angle x-ray transmission grating spectrometer with extended bandpass and resolving power > 10,000 [9905-65]</td>
</tr>
<tr>
<td>OPTICS II</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
</tr>
<tr>
<td>9905 1Y</td>
<td>Aberrations in square pore micro-channel optics used for x-ray lobster eye telescopes [9905-66]</td>
</tr>
<tr>
<td>9905 20</td>
<td>Development of x-ray multilayer telescope optics for XTP mission [9905-68]</td>
</tr>
<tr>
<td>9905 21</td>
<td>Progress on the fabrication of high resolution and lightweight monocrystalline silicon x-ray mirrors [9905-69]</td>
</tr>
<tr>
<td>9905 22</td>
<td>Gas bearing slumping and figure correction of x-ray telescope mirror substrates [9905-70]</td>
</tr>
<tr>
<td>9905 23</td>
<td>Slumped glass optics development with pressure assistance [9905-71]</td>
</tr>
<tr>
<td>9905 24</td>
<td>New lithographic techniques for x-ray spectroscopy [9905-72]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ATHENA I</th>
</tr>
</thead>
<tbody>
<tr>
<td>9905 26</td>
</tr>
<tr>
<td>9905 27</td>
</tr>
<tr>
<td>9905 29</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ATHENA II</th>
</tr>
</thead>
<tbody>
<tr>
<td>9905 2A</td>
</tr>
<tr>
<td>9905 2B</td>
</tr>
<tr>
<td>9905 2C</td>
</tr>
<tr>
<td>9905 2D</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part Two</th>
</tr>
</thead>
<tbody>
<tr>
<td>9905 2E</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ATHENA III</th>
</tr>
</thead>
<tbody>
<tr>
<td>9905 2G</td>
</tr>
<tr>
<td>9905 2H</td>
</tr>
<tr>
<td>9905 2I</td>
</tr>
</tbody>
</table>
Preliminary thermal architecture of the X-IFU instrument dewar [9905-87]

The Cryogenic AntiCoincidence detector for ATHENA X-IFU: a program overview [9905-88]

GAMMA

MeV gamma-ray observation with a well-defined point spread function based on electron tracking [9905-90]

The e-ASTROGAM gamma-ray space mission [9905-91]

The development of a low energy Compton imager for GRB polarization studies [9905-92]

Performance study of the gamma-ray bursts polarimeter POLAR [9905-93]

First flight of the Gamma-Ray Imager/Polarimeter for Solar flares (GRIPS) instrument [9905-94]

First measurement of the polarisation asymmetry of a gamma-ray beam between 1.74 to 74 MeV with the HARPO TPC [9905-95]

POSTER SESSION: SOLAR/UV

Correcting for errors due to walk and geometric distortion in the COS FUV detector [9905-136]

In-flight performance of the polarization modulator in the CLASP rocket experiment [9905-137]

The re-flight of the Colorado high-resolution Echelle stellar spectrograph (CHESS): improvements, calibrations, and post-flight results [9905-138]

Alignment and calibration of the ICON-FUV instrument: development of a vacuum UV facility [9905-140]

The qualification campaign of the EUI instrument of Solar Orbiter [9905-141]

Full-Stokes polychromatic polarimeter design for Arago [9905-142]

UVESP: ultraviolet visible Echellé spectropolarimeter for stellar astrophysics [9905-143]

Simulations of the WUVS instrument [9905-144]

Fireball multi object spectrograph: as-built optic performances [9905-145]

An ultraviolet imager to study bright UV sources [9905-146]

A near ultraviolet solar-blind telescope design using silicon CCD detectors [9905-147]
9905 34 Concept study for a compact homodyne astrophysics spectrometer for exoplanets (CHASE) [9905-148]

9905 35 Numerical simulation of space UV spectrographs [9905-149]

9905 36 WSO-UV ground segment for observation optimisation [9905-150]

9905 37 Optical design of WUVS instrument: WSO-UV spectrographs [9905-151]

9905 38 Design of a wide field far-UV spectrometer for a mission to Mars [9905-152]

9905 39 Near UV imager with an MCP-based photon counting detector [9905-153]

9905 3B Spectral calibration of CCDs and multilayer filters intended for future space applications [9905-155]

9905 3C A technique for selectable band imaging in the ultraviolet and optical [9905-158]

9905 3D Optical alignment of the Chromospheric Lyman-Alpha Spectro-polarimeter using sophisticated methods to minimize activities under vacuum [9905-159]

9905 3E An optimized Fresnel array for a test space mission in UV [9905-160]

9905 3F Development of a flight qualified 100 x 100 mm MCP UV detector using advanced cross strip anodes and associated ASIC electronics [9905-161]

9905 3G Ultraviolet detector with CMOS-coupled microchannel plates for future space missions [9905-162]

9905 3H Optical and structural characterization of reflective quarter wave plates for EUV range [9905-163]

9905 3I Design and improvements of the Attitude Control System of the FIREBall balloon experiment [9905-164]

9905 3J The effects of dust outbursts on the anomalistic features observed by Rosetta Alice around 67P/Churyumov-Gerasimenko [9905-165]

POSTER SESSION: ASTRO-H

9905 3L The design, implementation, and performance of the ASTRO-H SXS calorimeter array and anti-coincidence detector [9905-97]

9905 3M System design and implementation of the detector assembly for the ASTRO-H soft x-ray spectrometer [9905-98]

9905 3N Cryogen-free operation of the soft x-ray spectrometer instrument [9905-99]

9905 3O Design and on-orbit operation of the adiabatic demagnetization refrigerator on the Hitomi soft x-ray spectrometer instrument [9905-100]
Porous plug phase separator and superfluid film flow suppression system for the soft x-ray spectrometer onboard ASTRO-H [9905-101]

The design, implementation, and performance of the ASTRO-H SXS aperture assembly and blocking filters [9905-102]

Thermal analyses for initial operations of the Soft X-Ray Spectrometer (SXS) onboard ASTRO-H [9905-103]

Performance of the helium dewar and cryocoolers of ASTRO-H SXS [9905-104]

In-flight performance of pulse processing system of the ASTRO-H soft x-ray spectrometer [9905-105]

In-flight verification of the calibration and performance of the ASTRO-H (Hitomi) soft x-ray spectrometer [9905-106]

Ground calibration of the ASTRO-H (Hitomi) soft x-ray spectrometer [9905-108]

The ASTRO-H SXT performance to the large off-set angles [9905-110]

Reflectivity around the gold M-edges of x-ray reflector of the soft x-ray telescope onboard ASTRO-H [9905-111]

Reflectivity around the gold L-edges of x-ray reflector of the soft x-ray telescope onboard ASTRO-H [9905-112]

Ray-tracing simulation and in-orbit performance of the ASTRO-H hard x-ray telescope (HXT) [9905-114]

A laboratory test setup to study the stability of operation of the CdTe detectors within ASTRO-H HXI [9905-115]

POSTER SESSION: DETECTORS

The evolution of the ACIS contamination layer over the 16-year mission of the Chandra X-ray Observatory [9905-117]

Evolution of temperature-dependent charge transfer inefficiency correction for ACIS on the Chandra X-ray Observatory [9905-118]

Front-end readout ASIC for charged particle counting with the RADEM instrument on the ESA JUICE mission [9905-119]

Developments in calibration of EUV and VUV detectors for solar orbiter instrumentation using synchrotron radiation [9905-120]

Development of a pixelated CdTe detector module for a hard-x and gamma-ray imaging spectrometer application [9905-124]

Directly deposited blocking filters for high-performance silicon x-ray detectors [9905-126]
9905 4D Line profile modelling for multi-pixel CZT detectors [9905-127]

POSTER SESSION: POLARIZATION

9905 4H The on-board calibration system of the X-ray Imaging Polarimetry Explorer (XIPE) [9905-133]

Part Three

9905 4I Geometrical tools for the analysis of x-ray polarimetric signals [9905-270]

POSTER SESSION: NEW MISSIONS

9905 4L The microchannel x-ray telescope status [9905-217]
9905 4N Multi-directional measurements of high energy particles from the Sun-Earth L1 point with STEPS [9905-219]
9905 4P The evolution of structure and feedback with Arcus [9905-221]
9905 4V Fast simulation of the NICER instrument [9905-227]
9905 4W Ground calibration of the Silicon Drift Detectors for NICER [9905-228]
9905 4X Performance of NICER flight x-ray concentrator [9905-229]
9905 4Y Large Observatory for x-ray Timing (LOFT-P): a Probe-class mission concept study [9905-230]
9905 50 ART-XC/SRG: results of qualification thermo-vacuum tests [9905-232]
9905 51 Results of ground tests and calibration of x-ray focal plane detectors for ART-XC/SRG instrument [9905-233]
9905 52 An updated approach to the study of proton propagation in the eROSITA mirror system [9905-234]
9905 56 Ray-tracing critical-angle transmission gratings for the X-ray Surveyor and Explorer-size missions [9905-238]
9905 57 A new type of multiple image x-ray interferometer for arcseconds and sub-arcseconds sources [9905-239]
9905 5C Compact hard x-ray imaging system with a large FOV [9905-269]
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point spread function of ASTRO-H Soft X-ray Telescope (SXT)</td>
<td>9905-109</td>
</tr>
<tr>
<td>Development of x-ray spectroscopic polarimetry with bent Si crystals and CFRP substrate</td>
<td>9905-130</td>
</tr>
<tr>
<td>POSTER SESSION: ATHENA</td>
<td></td>
</tr>
<tr>
<td>Observing the WHIM with ATHENA</td>
<td>9905-166</td>
</tr>
<tr>
<td>Detectability of exoplanet transits with ATHENA’s WFI instrument: testing for white and correlated noise</td>
<td>9905-167</td>
</tr>
<tr>
<td>X-ray mirror development and testing for the ATHENA mission</td>
<td>9905-171</td>
</tr>
<tr>
<td>New x-ray parallel beam facility XPBF 2.0 for the characterization of silicon pore optics</td>
<td>9905-174</td>
</tr>
<tr>
<td>Simulation and modeling of silicon pore optics for the ATHENA x-ray telescope</td>
<td>9905-176</td>
</tr>
<tr>
<td>Development and production of a multilayer-coated x-ray reflecting stack for the ATHENA mission</td>
<td>9905-177</td>
</tr>
<tr>
<td>Optimising the multiplex factor of the frequency domain multiplexed readout of the TES-based microcalorimeter imaging array for the X-IFU instrument on the ATHENA x-ray observatory</td>
<td>9905-179</td>
</tr>
<tr>
<td>Development of frequency domain multiplexing for the X-ray Integral Field unit (X-IFU) on the ATHENA</td>
<td>9905-180</td>
</tr>
<tr>
<td>The impact of crosstalk in the X-IFU instrument on ATHENA science cases</td>
<td>9905-181</td>
</tr>
<tr>
<td>Gain drift compensation with no-feedback-loop developed for the X-IFU/ATHENA readout chain</td>
<td>9905-182</td>
</tr>
<tr>
<td>Microcalorimeter pulse analysis by means of principle component decomposition</td>
<td>9905-183</td>
</tr>
<tr>
<td>Performance assessment of different pulse reconstruction algorithms for the ATHENA X-ray Integral Field Unit</td>
<td>9905-184</td>
</tr>
<tr>
<td>The Cryogenic Anti-Coincidence detector for ATHENA X-IFU: pulse analysis of the AC-S7 single pixel prototype</td>
<td>9905-185</td>
</tr>
<tr>
<td>The mechanical and EM simulations of the CryoAC for the ATHENA X-IFU</td>
<td>9905-186</td>
</tr>
<tr>
<td>The new cryogenic silicon monolithic micro-bridged Anticoindence detector for the X-IFU of ATHENA</td>
<td>9905-187</td>
</tr>
<tr>
<td>Temperature effects on the performances of the ATHENA X-IFU thermal filters</td>
<td>9905-188</td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
</tr>
<tr>
<td>9905 61</td>
<td>The filter wheel and filters development for the X-IFU instruments onboard ATHENA [9905-189]</td>
</tr>
<tr>
<td>9905 62</td>
<td>Conceptual design of the X-IFU Instrument Control Unit on board the ESA ATHENA mission [9905-190]</td>
</tr>
<tr>
<td>9905 63</td>
<td>Updates on the background estimates for the X-IFU instrument onboard of the ATHENA mission [9905-191]</td>
</tr>
<tr>
<td>9905 64</td>
<td>TESSIM: a simulator for the ATHENA-X-IFU [9905-192]</td>
</tr>
<tr>
<td>9905 65</td>
<td>Background studies for ATHENA: status of the activities at IAAT [9905-193]</td>
</tr>
<tr>
<td>9905 66</td>
<td>Surface investigation and aluminum oxide estimation on test filters for the ATHENA X-IFU and WFI detectors [9905-194]</td>
</tr>
<tr>
<td>9905 67</td>
<td>Spectroscopic performance of DEPFET active pixel sensor prototypes suitable for the high count rate ATHENA WFI detector [9905-195]</td>
</tr>
<tr>
<td>9905 68</td>
<td>The filter and calibration wheel for the ATHENA wide field imager [9905-196]</td>
</tr>
</tbody>
</table>

POSTER SESSION: GAMMA

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>9905 6B</td>
<td>Ex luna, scientia: lunar occultation as a paradigm for nuclear astrophysics [9905-197]</td>
<td></td>
</tr>
<tr>
<td>9905 6C</td>
<td>GAMCOTE: a prototype for an advanced Compton Telescope [9905-198]</td>
<td></td>
</tr>
<tr>
<td>9905 6D</td>
<td>Experimental verification of the HERD prototype at CERN SPS [9905-199]</td>
<td></td>
</tr>
<tr>
<td>9905 6E</td>
<td>PANGU: a wide field gamma-ray imager and polarimeter [9905-200]</td>
<td></td>
</tr>
<tr>
<td>9905 6G</td>
<td>Gamma ray spectrometer for future Mars mission: design concept and simulation study [9905-202]</td>
<td></td>
</tr>
<tr>
<td>9905 6I</td>
<td>A compact and modular x- and gamma-ray detector with a CsI scintillator and double-readout Silicon Drift Detectors [9905-204]</td>
<td></td>
</tr>
<tr>
<td>9905 6J</td>
<td>Characterization of a LaBr₃ scintillator with multi-cell Silicon Drift Detector (SDD) readout [9905-205]</td>
<td></td>
</tr>
<tr>
<td>9905 6K</td>
<td>The Advanced Scintillator Compton Telescope (ASCOT) balloon project [9905-206]</td>
<td></td>
</tr>
<tr>
<td>9905 6L</td>
<td>A concept for a soft gamma-ray concentrator using thin-film multilayer structures [9905-207]</td>
<td></td>
</tr>
<tr>
<td>9905 6P</td>
<td>In-depth calibration of a Laue lens prototype composed of Fe and Al mosaic crystals [9905-214]</td>
<td></td>
</tr>
<tr>
<td>Session Code</td>
<td>Title</td>
<td>Reference</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>-----------</td>
</tr>
<tr>
<td>9905 6Q</td>
<td>Multilayer coating of XTP telescope mirrors</td>
<td>[9905-244]</td>
</tr>
<tr>
<td>9905 6R</td>
<td>X-ray mirror module analytical design from field of view requirement and stray light tolerances</td>
<td>[9905-245]</td>
</tr>
<tr>
<td>9905 6V</td>
<td>Development of low-stress Iridium coatings for astronomical x-ray mirrors</td>
<td>[9905-249]</td>
</tr>
<tr>
<td>9905 6W</td>
<td>Monte Carlo simulations of soft proton flares: testing the physics with XMM-Newton</td>
<td>[9905-250]</td>
</tr>
<tr>
<td>9905 6X</td>
<td>Alignment and distortion-free integration of lightweight mirrors into meta-shells for high-resolution astronomical x-ray optics</td>
<td>[9905-251]</td>
</tr>
<tr>
<td>9905 6Y</td>
<td>Indirect slumping of D263 glass on Fused Silica mould</td>
<td>[9905-252]</td>
</tr>
<tr>
<td>9905 70</td>
<td>Analysis on the use of vacuum oven for the indirect slumping of glass x-ray mirror segments</td>
<td>[9905-254]</td>
</tr>
<tr>
<td>9905 71</td>
<td>Development of an x-ray telescope using the carbon fiber reinforced plastic</td>
<td>[9905-255]</td>
</tr>
<tr>
<td>9905 73</td>
<td>On the alignment and focusing of the Marshall Grazing Incidence X-ray Spectrometer (MaGIXS)</td>
<td>[9905-257]</td>
</tr>
<tr>
<td>9905 74</td>
<td>Design of a medium size x-ray mirror module based on thin glass foils</td>
<td>[9905-258]</td>
</tr>
<tr>
<td>9905 76</td>
<td>Simulating x-ray telescopes with McXtrace: a case study of ATHENA’s optics</td>
<td>[9905-260]</td>
</tr>
<tr>
<td>9905 78</td>
<td>Ion beam figuring of thin glass plates: achievements and perspectives</td>
<td>[9905-262]</td>
</tr>
<tr>
<td>9905 7A</td>
<td>Design and analysis of an x-ray mirror assembly using the meta-shell approach</td>
<td>[9905-264]</td>
</tr>
<tr>
<td>9905 7E</td>
<td>Development of manufacture of mirror glass substrate for x-ray timing and polarization observatory</td>
<td>[9905-268]</td>
</tr>
</tbody>
</table>

Proc. of SPIE Vol. 9905 990501-13
Authors

Numbers in the index correspond to the last two digits of the six-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first four digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Aboudan, A., 2N
Ackermann, Jörg, 46
Adams, Joseph S., 0Q, 2H, 3L, 3M, 3Q, 3W, 5S
Adhikari, P. R., 4N
Adkins, Phillip W., 1H
Agrawal, P. C., 1D
Agudo, I., 1R
Ahangarianabhari, M., 1R
Aharonian, Felix, 0U
Airic, James, 2B
Ake, Thomas, 2T
Aldcroft, Jacob, 2D
Barret, Didier, 1R, 2H, 2I, 5F, 5T, 5W, 61
Bamêre, Nicolas, 27, 5N, 5P, 6P
Barve, Indrajit V., 1F
Basargina, O., 36
Basile, John, 0X
Basso, Stefano, 23, 74, 78
Batsch, T., 2P
Battiston, Roberto, 6D
Baumgartner, Wayne H., 1I, 4W
Bautz, Marshall W., 0L, 0U, 45, 4C, 4P, 56
Bavdaz, Marcos, 26, 27, 29, 5N, 5O
Bayer, Jörg, 2D
Baykal, A., 1R
Baysinger, Michael, 4Y
Beabout, Brent L., 2U
Beabout, Dyana L., 2U
Beardmore, Andy P., 1E
Becker, Chris, 4Y
Becker, Dan, 0Q
Becker, Werner, 1K
Bednarzik, Martin, 0F
Belan, Douglas, 0Q, 2H
Berghmans, D., 2X
Bernard, D., 2N, 2R
Bernardini, F., 1R
Bernardini, Paolo, 6D
Bernasconi, T., 2P
Berry, Daniel L., 1H
Bertoli, W., 4C
Bertuccio, G., 1R
Betancourt-Martinez, Gabriele, 0Q, 2H
Bhalerao, Varun B., 1G, 4D
Bhalwani, Shiraz, 1H
Bhatia, Ritwik, 1X
Bhattacharyya, Dipankar, 1G, 4D
Bhattacharyya, Sudip, 1E, 1R
Bialas, Thomas G., 0U, 0Y, 3N, 3O
Bianchi, Davide, 2C
Bianchi, S., 1R
Bianchini, A., 1R
Biasotti, M., 2K, 5X, 5Y, 5Z
Billot, Marc, 0F, 0J
Binko, P., 1R
Biner, Guy, 0F
Biskach, Michael P., 1S, 21, 6X
Black, J. Kevin, 1H
Blain, Dominique, 0F
Blain, Pascal, 2W
Blandford, Roger, 0U, 13
Blaurock, Carl, 1H
Blay, P., 1R
Blondel, Claire, 0F
Blower, Peter F., 2O, 6K, 6L
Bocchino, F., 1R
Bode, M., 1R
Bodin, P., 1R
Bogdan, Akos, 44
Bolling, Steven E., 2Q, 6P
Boller, Thomas, 1K
Bombaci, L., 1R
Bonafede, Joseph A., 7A
Bonino, D., 62
Bonnet, Bidau, J.-M., 1R
Bookbinder, J., 4P
Bordon, S., 0J
Borghi, G., 6J
Bonnemann, Walter, 1K
Böttcher, M., 6E
Boussadia, Mohamed, 0F
Bouffondos, S., 1R
Bouyjou, F., 1R
Boyce, Kevin R., 0U, 0W, 0Y, 3N, 3O, 3T, 3U, 3W
Bozzo, Enrico, 1R, 4H, 4Y, 61
Bradley, L., 1R
Braga, J., 1R
Brand, Thorsten, 5F, 5T, 5W, 64
Brandt, Soren, 1R, 2D, 4Y
Branduardi-Raymont, Graziella, 02, 61
Bräuninger, Heinrich, 1K
Bray, Nicolas, 3I
Bregman, J., 4P
Brejnholt, Nicolai F., 3Z, 6P
Brekosky, Regis P., 3L
Brenneman, Laura W., 0U, 4P
Breunig, Elias, 6Y, 70
Brez, Alessandro, 4G
Brickhouse, N., 4P
Briggs, M. S., 1R
Britvitch, I., 2P
Brogni, A., 2N
Bronke, Ginger M., 1H
Brown, E., 1R
Brown, Gary L., 1H
Brown, Gregory V., 0U, 0Y, 3U, 3W
Bruckner, Alexander R., 1X, 73
Bruef, P., 2R
Bruljn, Marcel P., 2L, 5S
Brulin, G., 6C
Brunner, Hermann, 1K
Buballa, M., 1R
Bucciantini, N., 1R
Budinoff, Jason G., 1H
Budtz-Jorgensen, C., 1R
Bultroga-Casas, Juan Camilo, 0E
Bultoli, Eraso, 0U
Bulgarelli, Andrea, 2K, 2N, 63, 6W
Bunton, M., 1J, 50
Burderi, L., 1R, 6J
Burgay, M., 1R
Burrkert, Wolfgang, 1K
Burrows, David N., 0L, 4P
Vietri, M., 1R
Vievering, Juliana, 0E
Vikhlinin, Alexey, 0Q
Villasenor, Joel S., 1H, 1I
Vincent, F. H., 1R
Vink, Jacob, 4H
Virta, Vihdori, 3F
Vishnyakov, Eugene A., 3B
Vishwakarma, Joel, 0Q
Voisin, F., 5U
Vola, Pascal, 3I
Von Ballmoos, Peter, 2N, 6P
Voronkov, S., 1J
Vrba, V., 1R
Wada, Atsushi, 0U, 0X
Wade, Colin, 6P
Waegebaert, V., 0J
Wakeham, Nicholas A., 0Q, 2H
Walk, S. J., 1R
Walter, Roland, 2N, 6D, 6E
Walton, D., 1R
Wampler-Doty, Matthew P., 4V
Wang, Bo, 6D
Wang, Chi, 02
Wang, Junjing, 1R, 6D
Wang, Kun, 20
Wang, Le, 6D
Wang, Ruijie, 2P, 6D
Wang, S., 2R
Wang, Xiaoqiang, 20
Wang, Zhanshan, 20, 6Q, 7E
Wang, Zhigang, 6D
Wanlin, E., 6C
Wassell, Edward J., 0Q, 2H
Watanabe, Shin, 0E, 0U, 11, 13, 1R, 5C
Watanabe, Tomomi, 0U, 0W, 3L, 3M, 3Q, 3T, 3U, 3W
Watkins, Anna, 1R, 4Y
Wawrzaszek, R., 1R
Webb, N., 1R
Webster, Chris, 34
Wei, Zhenbo, 7E
Weinberg, N., 1R
Weisskopf, Martin C., 17, 4H
Wen, Mingwu, 6V, 6Y
Wen, X., 2P
Wende, H., 1R
Werner, Norbert, 0U
Westergaard, Niels J., 5O, 76
Wheatley, P., 1R
White, James, 2T
Wielders, Arno, 02
Wijers, R., 1R
Wijnands, R., 1R
Wilk, Daniel, 0U
Wild, Christopher, 0F
Willke, Paul, 0X
Wilkins, Dan, 0U
Wille, Eric, 26, 27, 29, 5N, 5O
Wille, M., 1R
Williams, Brian, 0U
Willingale, R., 1L, 1Y, 4L, 4P
Wilms, Jörn, 1K, 1R, 2B, 4P, 5F, 5G, 5T, 5W, 64
Wilson, Jacob, 2V
Wilson-Hodge, Colleen A., 1R, 4Y
Winebarger, Amy R., 08, 3D, 73
Winter, Berend, 1R, 4H, 4Y
Winternitz, Luke B., 1H
Wishnow, Edward, 38
Wittfoett, Michael, 14
Wolford, George L., 1H
Wolk, S., 4P
Wong, Emily N., 6L
Wood, K., 1R
Woods, Thomas N., 09
Wooley, S. E., 1R
Wright, Alex M., 6K
Wright, Graham, 22
Wright, Michael R., 1H
Wu, Bobing, 2P, 6D
Wu, X., 1R
Wu, Xin, 2N, 6D, 6E
Xiao, H. L., 2P
Xia, H., 1R
Xiong, S. L., 2P
Xu, H. H., 2P
Xu, Ming, 2P, 6D
Xu, R., 1R
Yadav, J. S., 1D
Yamada, Shinya, 0U, 0W, 0Y, 1N, 3S, 3T, 3U, 3W
Yamada, Takahiro, 0U
Yamaguchi, Hiroya, 0U, 14
Yamaguchi, M., 2R
Yamamoto, R., 1N
Yamaoka, Kazutaka, 0U, 11, 13
Yamasaki, Noriko Y., 0U, 0X, 0Y, 1N, 2J, 3Q, 3R, 3S, 3U, 3W
Yamauchi, Makoto, 0U, 10
Yamauchi, Shigeo, 0U, 12, 41
Yan, Peng, 6D
Yang, Mike Y., 1H
Yang, Yang, 6Q
Yanson, Alexei, 27
Yao, Youwei, 22
Yaoqian, Tahir, 0U, 14
Yaroshenko, Valeri, 1K
Yaskovich, A., 1J
Yasuda, Susumu, 0X
Yatsu, Yoichi, 0U, 0Y, 11, 13, 3S
Yonetoku, Daisuke, 0M, 0U, 13, 1A
Yonemura, Tomokage, 1A
Yoon, Wonsik, 0Q, 2H
Yoshida, Atsumasa, 0U
Yoshida, Kazuki, 0M
Yoshida, Masaki, 08
Yoshida, Seiji, 0X, 3N, 3O, 3P, 3Q, 3R, 3S
Yoshikawa, Ichiro, 3G
Yoshikawa, K., 2M
Yoshikawa, Shun, 3Y
Yoshinaga, Keigo, 1A
Yoshioka, Kazuo, 3G
Yoshioka, Kenya, 71
Young, C. Alex, 6B
Yu, W., 1R
Yu, Wayne H., 1H
Yuan, F., 1R
Yuan, W., 1R
Yuan, Y., 1R
Yuasa, Takayuki, 0U, 11, 13
Yushkin, Maksim, 2Z, 35, 37
Zampa, G., 1R, 6I, 6J
Zampa, N., 1R, 6I, 6J
Zampieri, L., 1R
Zane, Silvia, 1R, 4H, 4Y
Zanetti, Davide, 4H
Zavlin, V., 1J
Zdunik, L., 1R
Zdziarski, A., 1R, 2N, 6E
Zech, A., 1R
Zenone, Isabelle, 3I
Zhang, Aibing, 02
Zhang, B., 1R
Zhang, C., 1R
Zhang, L. Y., 2P
Zhang, Li, 2P, 6D
Zhang, S., 1R
Zhang, Shuangnan, 1R, 2P, 6D
Zhang, William W., 1S, 21, 6X, 7A
Zhang, X. F., 2P
Zhang, Y. J., 2P
Zhang, Zhong, 20, 6Q
Zhao, Jun, 3L
Zheng, Jianhua, 02
Zhuravleva, Irina, 0U
Zingale, M., 1R
Zoghbi, Abderahmen, 0U
Zoglauer, A., 2N, 2Q
Zorzi, N., 6I, 6J
Zuknik, Karl-Heinz, 27
Zuo, Heng, 22
Zuppella, P., 3H
Zwart, F., 1R
Zwolinska, A., 2P
Conference Committee

Symposium Chairs

Colin Cunningham, UK Astronomy Technology Centre
(United Kingdom)
Masanori Iye, National Astronomical Observatory of Japan (Japan)

Symposium Co-chairs

Allison A. Barto, Ball Aerospace & Technologies Corporation
(United States)
Suzanne K. Ramsay, European Southern Observatory (Germany)

Conference Chairs

Jan-Willem A. den Herder, SRON Netherlands Institute for Space Research (Netherlands)
Tadayuki Takahashi, Japan Aerospace Exploration Agency (Japan)
Marshall Bautz, Massachusetts Institute of Technology (United States)

Conference Program Committee

Hisamitsu Awaki, Ehime University (Japan)
Didier Barret, Institut de Recherche en Astrophysique et Planétologie (France)
Marcos Bavdaz, European Space Research and Technology Centre (Netherlands)
Angela Bazzano, INAF - Istituto di Astrofisica e Planetologia Spaziale (Italy)
Steven E. Boggs, University of California, Berkeley (United States)
João Braga, Instituto Nacional de Pesquisas Espaciais (Brazil)
Jin Chang, Purple Mountain Observatory (China)
Marco Feroci, INAF - Istituto di Fisica dello Spazio Interplanetario (Italy)
Luigi Gallo, Saint Mary’s University (Canada)
Neil A. Gehrels, NASA Goddard Space Flight Center (United States)
James C. Green, University of Colorado at Boulder (United States)
Fiona Harrison, California Institute of Technology (United States)
Margarita Hernanz, Consejo Superior de Investigaciones Científicas (Spain)
Caroline A. Kilbourne, NASA Goddard Space Flight Center (United States)
Olivier Limousin, CEA-Centre de SACLAY (France)
Hironori Matsumoto, Nagoya University (Japan)
Mark L. McConnell, The University of New Hampshire (United States)
Kazuhiro Nakazawa, The University of Tokyo (Japan)
Kirpal Nandra, Max-Planck-Institut für extraterrestrische Physik (Germany)
Shouleh Nikzad, Jet Propulsion Laboratory (United States)
Takaya Ohashi, Tokyo Metropolitan University (Japan)
Giovanni Pareschi, INAF - Osservatorio Astronomico di Brera (Italy)
Biswajit Paul, Raman Research Institute (India)
Mikhail N. Pavlinsky, Space Research Institute (Russian Federation)
Paul S. Ray, U.S. Naval Research Laboratory (United States)
Vincent Tatischeff, Institut National de Physique Nucléaire et de Physique des Particules (France)
Hiroshi Tsunemi, Osaka University (Japan)
Martin C. Weisskopf, NASA Marshall Space Flight Center (United States)
Richard Willingale, University of Leicester (United Kingdom)
Jörn Wilms, Friedrich-Alexander-Universität Erlangen-Nürnberg (Germany)
Shuangnan Zhang, Institute of High Energy Physics (China)

Session Chairs

1 Solar/UV I
 Shouleh Nikzad, Jet Propulsion Laboratory (United States)

2 Solar/UV II
 Marshall Bautz, Massachusetts Institute of Technology (United States)

3 Solar/UV III
 Shuangnan Zhang, Institute of High Energy Physics (China)

4 Detector I
 Caroline A. Kilbourne, NASA Goddard Space Flight Center (United States)

5 NASA Mission Studies: Joint Session with Conferences 9904 and 9905
 Mario R. Perez, NASA Headquarters (United States)

6 Detector II
 Mikhail N. Pavlinsky, Space Research Institute (Russian Federation)

7 ASTRO-H I
 Marshall Bautz, Massachusetts Institute of Technology (United States)

8 ASTRO-H II
 Takaya Ohashi, Tokyo Metropolitan University (Japan)
9 Polarization
Margarita Hernanz, Consejo Superior de Investigaciones Científicas (Spain)

10 ASTROSAT
Marshall Bautz, Massachusetts Institute of Technology (United States)

11 NICER
Marco Feroci, INAF - Istituto di Fisica dello Spazio Interplanetario (Italy)

12 SRG
Marco Feroci, INAF - Istituto di Fisica dello Spazio Interplanetario (Italy)

13 New Missions
Kazuhiro Nakazawa, The University of Tokyo (Japan)

14 Optics I
Marcos Bavdaz, European Space Research and Technology Centre (Netherlands)

15 Optics II
Giovanni Pareschi, INAF - Osservatorio Astronomico di Brera (Italy)

16 ATHENA I
Richard Willingale, University of Leicester (United Kingdom)

17 ATHENA II
Marcos Bavdaz, European Space Research and Technology Centre (Netherlands)

18 ATHENA III
Kirpal Nandra, Max-Planck-Institut für extraterrestrische Physik (Germany)

19 Gamma
Margarita Hernanz, Consejo Superior de Investigaciones Científicas (Spain)