Front Matter: Volume 9884
Nanophotonics VI

David L. Andrews
Jean-Michel Nunzi
Andreas Ostendorf
Editors

3–7 April 2016
Brussels, Belgium

Sponsored by
SPIE

Cosponsored by
B-PHOT—Brussels Photonics Team (Belgium)
Research Foundation Flanders (Belgium)
Visit Brussels (Belgium)

Cooperating Organisations
Photonics 21 (Germany)
EOS—European Optical Society (Germany)
KTN—the Knowledge Transfer Network (United Kingdom)
Graphene Flagship (Belgium)
Photonics Public Private Partnership (Belgium)

Published by
SPIE

Volume 9884
The papers in this volume were part of the technical conference cited on the cover and title page. Papers were selected and subject to review by the editors and conference program committee. Some conference presentations may not be available for publication. Additional papers and presentation recordings may be available online in the SPIE Digital Library at SPIEDigitalLibrary.org.

The papers reflect the work and thoughts of the authors and are published herein as submitted. The publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Please use the following format to cite material from this book:

ISSN: 0277-786X
ISSN: 1996-756X (electronic)
ISBN: 9781510601291

Published by
SPIE
P.O. Box 10, Bellingham, Washington 98227-0010 USA
Telephone +1 360 676 3290 (Pacific Time) · Fax +1 360 647 1445
SPIE.org

Copyright © 2016, Society of Photo-Optical Instrumentation Engineers.

Copying of material in this book for internal or personal use, or for the internal or personal use of specific clients, beyond the fair use provisions granted by the U.S. Copyright Law is authorized by SPIE subject to payment of copying fees. The Transactional Reporting Service base fee for this volume is $18.00 per article (or portion thereof), which should be paid directly to the Copyright Clearance Center (CCC), 222 Rosewood Drive, Danvers, MA 01923. Payment may also be made electronically through CCC Online at copyright.com. Other copying for republication, resale, advertising or promotion, or any form of systematic or multiple reproduction of any material in this book is prohibited except with permission in writing from the publisher. The CCC fee code is 0277-786X/16/$18.00.

Printed in the United States of America.

Publication of record for individual papers is online in the SPIE Digital Library.

SPIEDIGITALLIBRARY.ORG

Paper Numbering: Proceedings of SPIE follow an e-First publication model, with papers published first online and then in print. Papers are published as they are submitted and meet publication criteria. A unique citation identifier (CID) number is assigned to each article at the time of the first publication. Utilization of CIDs allows articles to be fully citable as soon as they are published online, and connects the same identifier to all online, print, and electronic versions of the publication. SPIE uses a six-digit CID article numbering system in which:

- The first four digits correspond to the SPIE volume number.
- The last two digits indicate publication order within the volume using a Base 36 numbering system employing both numerals and letters. These two-number sets start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B ... 0Z, followed by 10-1Z, 20-2Z, etc.

The CID Number appears on each page of the manuscript. The complete citation is used on the first page, and an abbreviated version on subsequent pages.

Proc. of SPIE Vol. 9884 988401-2
Contents

 ix Authors
 xiii Conference Committee

LIGHT HARVESTING AND FREQUENCY CONVERSION

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>9884 08</td>
<td>Subwavelength resonant antennas enhancing electromagnetic energy harvesting</td>
<td>[9884-9]</td>
</tr>
<tr>
<td>9884 09</td>
<td>Mode matching in high non linear susceptibility metamaterials</td>
<td>[9884-10]</td>
</tr>
</tbody>
</table>

CAVITIES AND WAVEGUIDES

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>9884 0B</td>
<td>How mesoscale lasers can answer fundamental questions related to nanolasers (Invited Paper)</td>
<td>[9884-12]</td>
</tr>
<tr>
<td>9884 0C</td>
<td>Nanoscale photonics using coupled hybrid plasmonic architectures (Invited Paper)</td>
<td>[9884-13]</td>
</tr>
</tbody>
</table>

QUANTUM AND NONLINEAR OPTICS IN NANOSTRUCTURES I

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>9884 0I</td>
<td>Band diagram of strained graphene nanoribbons</td>
<td>[9884-19]</td>
</tr>
<tr>
<td>9884 0J</td>
<td>Improved nonlinear plasmonic slot waveguide: a full study</td>
<td>[9884-20]</td>
</tr>
</tbody>
</table>

QUANTUM AND NONLINEAR OPTICS IN NANOSTRUCTURES II

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>9884 0L</td>
<td>Architecture, development and implementation of a SWIR to visible integrated up-conversion imaging device (Invited Paper)</td>
<td>[9884-23]</td>
</tr>
<tr>
<td>9884 0N</td>
<td>On the emergence of Raman signals characterizing multicenter nanoscale interactions</td>
<td>[9884-25]</td>
</tr>
</tbody>
</table>

CONTROL OF NANOSCALE OPTICAL AND ELECTRONIC PROCESSES

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>9884 0O</td>
<td>Ultrafast excitonic and charge transfer dynamics in nanostructured organic polymer materials (Keynote Paper)</td>
<td>[9884-26]</td>
</tr>
<tr>
<td>9884 0P</td>
<td>Enhancing Förster nonradiative energy transfer via plasmon interaction (Invited Paper)</td>
<td>[9884-27]</td>
</tr>
</tbody>
</table>
SURFACE PLASMONS AND DEVICES

9884 10 Radiation direction control by optical slot antenna integrated with plasmonic waveguide [9884-37]
9884 12 Plasmonic hierarchical nanostructures with cascaded field enhancement and their SERS applications [9884-39]

NANOMICROSCOPY

9884 13 Monitoring excimer formation of perylene dye molecules within PMMA-based nanofiber via FLIM method [9884-41]

PLASMONICS AND SURFACE NANOSTRUCTURES

9884 1E Plasmonics in the UV range with Rhodium nanocubes [9884-52]

STRUCTURED LIGHT

9884 1I A subwavelength Stokes polarimeter on a silicon chip [9884-57]
9884 1J Laser controlled deposition of metal microstructures via nondiffracting Bessel beam illumination [9884-58]

FUNCTIONALIZED SENSING

9884 1T Long-term functionalization of optical resonance sensor spots [9884-66]
9884 1U Drastic difference in luminescence stability between amine- and thiol-capped quantum dots treated with CO2 [9884-67]

POSTER SESSION

9884 1W Photo-induced brightening and broadening effects of gold quantum clusters [9884-70]
9884 1Y Using a plasmonic lens to control the emission of electrically excited light [9884-72]
9884 20 Nonlinear effects in propagation of long-range surface plasmon polaritons in gold strip waveguides [9884-74]
9884 21 Exciton and multi-exciton dynamics in CdSe/Cd1-xZnxS quantum dots [9884-75]
9884 22 Fluorescence quantum yield measurement in nanoparticle-fluorophore systems by thermal lens spectroscopy [9884-76]
CdTe quantum dots: aqueous phase synthesis, stability studies and protein conjugation for
development of biosensors [9884-77]

Laser-induced synthesis of a nanostructured polymer-like metal-carbon complexes
[9884-79]

The effect of the size of Au nanorods on random laser action in a disordered media of
ethylene glycol doped with Rh6G dye [9884-80]

Optical diagnostics of surfaces of single evaporating liquid microdroplet of solutions and
suspensions (Best Student Paper Award) [9884-81]

Development of cadmium-free quantum dot for intracellular labelling through
electroporation or lipid-calcium-phosphate [9884-82]

Grating based hybrid plasmonic waveguide for subwavelength optical confinement with
low loss [9884-84]

Enhanced second-harmonic generation driven from magnetic dipole resonance in
AlGaAs nanoantennas [9884-85]

Deterministic embedding of a single gold nanoparticle into polymeric microstructures by
direct laser writing technique [9884-86]

Proposed new approach to design all optical AND gate using plasmonic based Mach-
Zehnder interferometer for high speed communication [9884-87]

Sensing (un)binding events via surface plasmons: effects of resonator geometry [9884-89]

Study on structural and optical properties of TiO2 ALD coated silicon nanopillars [9884-91]

Large area gold coated nano-needles fabricated by proximity mask aligner lithography
for plasmonic AR-structures [9884-92]

Infrared reduction, an efficient method to control the non-linear optical property of
graphene oxide in femtosecond regime [9884-95]

Effect of the particle shape on the optical properties of black carbon aggregates [9884-96]

Interpretation of the effect of dielectric spacer on the ZnO/Ag structure luminescence
intensity [9884-98]

Autocorrelation and relaxation time measurements on metal oxide core: dielectric shell
beads in an optical trap [9884-99]

Efficient carrier transfer from graphene quantum dots to GaN epilayers [9884-101]

Sensing characteristics of plasmonic structure based on transferring process of polystyrene
nano-beads [9884-102]

Fabrication and characterization of the noble metal nanostructures on the GaAs surface
[9884-109]
Quantitative comparison of measurement methods for the evaluation of micro- and nanostructures written with 2PP [9884-110]

Aggregation of quantum dots in hybrid structures based on TiO2 nanoparticles [9884-112]

Circular dichroism spectroscopy of complexes of semiconductor quantum dots with chlorin e6 [9884-114]

Quantum theory for the nanoscale propagation of light through stacked thin film layers [9884-115]

New design of InGaAs guided-mode resonance photodiode for SWIR low dark current imaging [9884-116]

Plasmonic coupling between metallized fiber tips with sub-wavelength open apertures [9884-118]

Recent progress in plasmonic colour filters for image sensor and multispectral applications [9884-119]

Using femtosecond lasers to modify sizes of gold nanoparticles [9884-120]

Influence of the QD luminescence quantum yield on photocurrent in QD/graphene hybrid structures [9884-121]

Enhanced fluorescence and aggregation of rhodamine molecules dispersed in a thin polymer film in the presence of plasmonic nanostructures [9884-123]

Surface plasmons excited by the photoluminescence of organic nanofibers in hybrid plasmonic systems [9884-124]

Dynamic photophoresis-based optical trapping using a spatial light modulator [9884-125]

Luminescence kinetics of the radiative transitions in quantum dots CdSe/ZnS in the near field of plasmonic nanoparticles [9884-126]

FRET efficiency in surface complexes of CdSe/ZnS quantum dots with azo-dyes [9884-127]

Modulation of extraordinary optical transmission through nanohole arrays using ultrashort laser pulses [9884-128]

Induced modulation instability of surface plasmon polaritons in a layer structure of subwavelength thickness [9884-129]

Formation of quasiperiodic bimetal thin films with controlled optical and electrical properties [9884-130]

Two-level quantum dot susceptibility and polarization in the presence of Coulomb correlations [9884-131]

Controllable photo-brightening/photo-darkening of semiconductor quantum dots under laser irradiation [9884-132]
Self-organization and photo-induced formation of cyanine dye aggregates on the plasmonic Ag nanoparticles

Plasma model of superconducting crystals
Authors

Numbers in the index correspond to the last two digits of the six-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first four digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Abdulhalim, Ibrahim, 0L
Acikgoz, Sabriye, 13
Adam, Jost, 3D
Alcaraz de la Osa, R., 1E
Almeida de Matos, Ricardo, 39
Ananthamurthy, Sharath, 2P
Andrews, David L., 0N, 34
Annas, Kirill I., 3G
Antosiewicz, Tomasz J., 2F
Arakelian, S., 2G, 3J
Archer, Justice, 27
Aseyev, Petr I., 3K
Bache, Morten, 20
Bai, Benfeng, 12
Bakanov, Aleksii G., 3F
Baranov, Alexandre V., 31, 33, 3A, 3G
Baranov, Mikhail A., 3A
Barreda, A. I., 1E
Bakhtia, S. B. N., 2L
Bhattacharya, S., 2L
Bhattacharya, Sarbari, 3P
Boer-Duchemin, Elizabeth, 1Y
Bonilla, Luis, 0I
Borse, Vivek, 23
Bouchon, Patrick, 09
Bourgin, Yannick, 2I
Bozio, Renato, 21
Briskina, Ch. M., 2O
Burghardt, Irene, 0O
Cao, Shuiyan, 1Y
Carletti, Luca, 2B
Chauvet, Mathieu, 0J
Chistyakov, Alexander A., 3L
Choi, Young-Wan, 2S
Choubey, Bhaskar, 38
Claudio, Virginia, 2F
Cleary, Olan, 31
Colas des Francs, Gérard, 37
Collins, Steve, 38
Courrol, Lilac Coronato, 39
Cumming, David, 38
Da Silva Coelho, Thiago, 39
Danckaert, Jan, 08
Dannberg, Peter, 2I
Das, A. C., 2L
Datta, P. K., 2L
De Angelis, Costantino, 2B
Decombe, Jean-Baptiste, 37
Dehade, Robin, 3H
Demir, Mustafa Muamer, 13
Derkachov, Gennadij, 27
Drampyan, Rafael, 1J
Drezet, Aurélien, 1Y
Dujardin, Gérald, 1Y
Dupuis, Christophe, 35
Eisenbrandt, Pierre, 0O
Elsawy, Mahmoud M. R., 0J
Espinosa Soria, A., 1I
Everitt, H. O., 1E
Fedorov, Anatoly V., 31, 33, 3A, 3G
Feng, Guoying, 26
Ferreira, M., 22
Fick, Jochen, 37
Finkelstein, G., 1E
Flutowski, Jacek, 3D
Forbes, Kayn A., 34
Fotiadi, Andrei, 3I
Gaponik, N., 0P
Gili, Valerio, 2B
Ginis, Vincent, 08
Gladskikh, Igor A., 2Y
Gladskikh, Polina V., 2Y
Golan, Yuval, 0L
González, F., 1E
Grant, James, 38
Grilo, Amadeu, 1I
Gromov, Yuliya A., 3A, 3G
Gun’ko, Yuri K., 0P, 31
Gutiérrez, Y., 1E
Haacke, Stefan, 0O
Haïdar, Riad, 09, 35
Hamisch, Emely Marie, 22
Hechster, Elad, 0L
Helmy, Amr S., 0C
Héron, Sébastien, 09
Higgins, L. J., 0P
Hou, Tzh-Yin, 28
Huang, Hsiu-Ying, 1W
Huang, Hsiu-Ying, 28
Huant, Serge, 1Y
Hung, Wei-Ling, 28
Hwang, Jeongwoo, 2S
Iatsunskyi, Igor, 2H
Inci, Mehmet Naci, 13
Istratov, A., 3J
Conference Committee

Symposium Chairs
- Francis Berghmans, Vrije Universiteit Brussel (Belgium)
- Jürgen Popp, Leibniz-Institut für Photonische Technologien e.V. (Germany)
- Ronan Burgess, European Commission (Belgium)
- Peter Hartmann, SCHOTT AG (Germany)

Honorary Symposium Chair
- Hugo Thienpont, Vrije Universiteit Brussel (Belgium)

Conference Chairs
- David L. Andrews, University of East Anglia (United Kingdom)
- Jean-Michel Nunzi, Queen's University (Canada)
- Andreas Ostendorf, Ruhr-Universität Bochum (Germany)

Conference Programme Committee
- Angus J. Bain, University College London (United Kingdom)
- Mario Berberan-Santos, Universidade de Lisboa (Portugal)
- Renato Bozio, Università degli Studi di Padova (Italy)
- Céline Fiorini-Debuisschert, Commissariat à l'Énergie Atomique (France)
- Vincent Ginis, Vrije Universiteit Brussel (Belgium)
- Yuval Golan, Ben-Gurion University of the Negev (Israel)
- Erez Hasman, Technion-Israel Institute of Technology (Israel)
- Yasushi Inouye, Osaka University (Japan)
- Gediminas Juzeliunas, Vilnius University (Lithuania)
- Martti Kauranen, Tampere University of Technology (Finland)
- Satoshi Kawata, Osaka University (Japan)
- Francois Lagugné-Labarthet, The University of Western Ontario (Canada)
- Isabelle Ledoux-Rak, École Normale Supérieure de Cachan (France)
- Christoph Lienau, Carl von Ossietzky Universität Oldenburg (Germany)
- Nazario Martin, Universidad Complutense de Madrid (Spain)
- Raúl J. Martín-Palma, Universidad Autónoma de Madrid (Spain)
- Jesper Mork, Technical University of Denmark (Denmark)
- Michel Orrit, Leiden University (Netherlands)
- Carsten Reinhardt, Laser Zentrum Hannover e.V. (Germany)
- Anatoly V. Zayats, King's College London (United Kingdom)
Session Chairs

1. Near-field Optics
 Angus J. Bain, University College London (United Kingdom)

2. Light Harvesting and Frequency Conversion
 Angus J. Bain, University College London (United Kingdom)

3. Cavities and Waveguides
 David L. Andrews, University of East Anglia (United Kingdom)

4. Quantum and Nonlinear Optics in Nanostructures I
 Jean-Michel Nunzi, Queen’s University (Canada)

5. Quantum and Nonlinear Optics in Nanostructures II
 Angus J. Bain, University College London (United Kingdom)

6. Control of Nanoscale Optical and Electronic Processes
 Jean-Michel Nunzi, Queen’s University (Canada)

7. Nanomanipulation with Light
 Christoph Lienau, Carl von Ossietzky Universität Oldenburg (Germany)
 Jean-Michel Nunzi, Queen’s University (Canada)

8. Surface Plasmons and Devices
 Anatoly V. Zayats, King’s College London (United Kingdom)

9. Nanomicroscopy
 Andreas Ostendorf, Ruhr-Universität Bochum (Germany)

10. Photoactive Arrays
 Andreas Ostendorf, Ruhr-Universität Bochum (Germany)

11. Plasmonics and Surface Nanostructures
 Mario Berberan-Santos, Universidade de Lisboa (Portugal)

12. Structured Light
 David L. Andrews, University of East Anglia (United Kingdom)

13. Nanoscale Optics
 Andreas Ostendorf, Ruhr-Universität Bochum (Germany)

14. Functionalized Sensing
 Mario Berberan-Santos, Universidade de Lisboa (Portugal)