Contents

<table>
<thead>
<tr>
<th>Number</th>
<th>Session</th>
<th>Title</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>SESSION 1</td>
<td>PATHOGEN DETECTION</td>
<td></td>
</tr>
<tr>
<td>05</td>
<td>9864 05</td>
<td>Active fluid mixing with magnetic microactuators for capture of salmonella</td>
<td>[9864-4]</td>
</tr>
<tr>
<td>02</td>
<td>SESSION 2</td>
<td>SPECTRAL SENSING APPLICATIONS I</td>
<td></td>
</tr>
<tr>
<td>06</td>
<td>9864 06</td>
<td>Detection of fresh bruises in apples by structured-illumination reflectance imaging</td>
<td>[9864-5]</td>
</tr>
<tr>
<td>07</td>
<td>9864 07</td>
<td>Relationship between shelf-life and optical properties of Yuanhuang pear in the region of 400–1150 nm</td>
<td>[9864-6]</td>
</tr>
<tr>
<td>09</td>
<td>9864 09</td>
<td>Comparative analysis of Worldview-2 and Landsat 8 for coastal saltmarsh mapping accuracy assessment</td>
<td>[9864-9]</td>
</tr>
<tr>
<td>03</td>
<td>SESSION 3</td>
<td>RAMAN SPECTROSCOPY AND IMAGING</td>
<td></td>
</tr>
<tr>
<td>0A</td>
<td>9864 0A</td>
<td>Detection of metanil yellow contamination in turmeric using FT-Raman and FT-IR spectroscopy</td>
<td>[9864-10]</td>
</tr>
<tr>
<td>0B</td>
<td>9864 0B</td>
<td>Detection of chemical residues in food oil via surface-enhanced Raman spectroscopy</td>
<td>[9864-11]</td>
</tr>
<tr>
<td>0C</td>
<td>9864 0C</td>
<td>Line-scan spatially offset Raman spectroscopy for inspecting subsurface food safety and quality</td>
<td>[9864-12]</td>
</tr>
<tr>
<td>0D</td>
<td>9864 0D</td>
<td>Classification of cucumber green mottle mosaic virus (CGMMV) infected watermelon seeds using Raman spectroscopy</td>
<td>[9864-13]</td>
</tr>
<tr>
<td>0E</td>
<td>9864 0E</td>
<td>Continuous gradient temperature Raman spectroscopy of the long chain polyunsaturated fatty acids docosapentaenoic (DPA; 22:5n-6) and docosahexaenoic (DHA; 22:6n-3) from −100 to 20° C</td>
<td>[9864-14]</td>
</tr>
<tr>
<td>04</td>
<td>SESSION 4</td>
<td>MICROBIAL AND CHEMICAL CONTAMINANT DETECTION</td>
<td></td>
</tr>
<tr>
<td>0F</td>
<td>9864 0F</td>
<td>Portable NIR bottled liquid explosive detector (Invited Paper)</td>
<td>[9864-15]</td>
</tr>
<tr>
<td>0H</td>
<td>9864 0H</td>
<td>Method for detection of a few pathogenic bacteria and determination of live versus dead cells (Best Paper Award)</td>
<td>[9864-17]</td>
</tr>
</tbody>
</table>
SESSION 5 HYERSPECTRAL IMAGING FOR FOOD SAFETY AND QUALITY

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>9864 0J</td>
<td>Characterization of a new fertilizer during field trials by hyperspectral imaging</td>
<td>[9864-19]</td>
</tr>
<tr>
<td>9864 0M</td>
<td>Hyperspectral imaging system for disease scanning on banana plants</td>
<td>[9864-22]</td>
</tr>
<tr>
<td>9864 0N</td>
<td>Food inspection using hyperspectral imaging and SVDD</td>
<td>[9864-23]</td>
</tr>
</tbody>
</table>

SESSION 6 SPECTRAL SENSING APPLICATIONS II

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>9864 0P</td>
<td>Applicability of ion mobility spectrometry for detection of quarantine pests in wood</td>
<td>[9864-25]</td>
</tr>
<tr>
<td>9864 0Q</td>
<td>A sequential method for measuring the optical properties of two-layer media with spatially-resolved diffuse reflectance: simulation study</td>
<td>[9864-26]</td>
</tr>
<tr>
<td>9864 0R</td>
<td>Design of an automated cart and mount for a hyperspectral imaging system to be used in produce fields</td>
<td>[9864-27]</td>
</tr>
</tbody>
</table>

POSTER SESSION

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>9864 0T</td>
<td>Nondestructive and rapid detection of potato black heart based on machine vision technology</td>
<td>[9864-29]</td>
</tr>
<tr>
<td>9864 0U</td>
<td>Rapid discrimination of main red meat species based on near-infrared hyperspectral imaging technology</td>
<td>[9864-30]</td>
</tr>
<tr>
<td>9864 0V</td>
<td>A portable nondestructive real-time detection system for inspection of pork quality attributes using Vis/NIR spectral technique</td>
<td>[9864-31]</td>
</tr>
<tr>
<td>9864 0W</td>
<td>Development of hand-held nondestructive detection device for assessing meat freshness</td>
<td>[9864-32]</td>
</tr>
<tr>
<td>9864 0Y</td>
<td>Raman spectroscopy-based detection of chemical contaminants in food powders</td>
<td>[9864-34]</td>
</tr>
<tr>
<td>9864 0Z</td>
<td>Whole-surface round object imaging method using line-scan hyperspectral imaging system (Best Paper Award)</td>
<td>[9864-35]</td>
</tr>
<tr>
<td>9864 10</td>
<td>MCT-based SWIR hyperspectral imaging system for evaluation of biological samples</td>
<td>[9864-36]</td>
</tr>
<tr>
<td>9864 11</td>
<td>Detection of fecal contamination on beef meat surfaces using handheld fluorescence imaging device</td>
<td>[9864-37]</td>
</tr>
<tr>
<td>9864 12</td>
<td>Alternative soaking media for the FDA procedure in the detection of salmonella from tomatoes and spinach leaf using phage magnetoelastic biosensors</td>
<td>[9864-38]</td>
</tr>
<tr>
<td>9864 15</td>
<td>Raman mapping of intact biofilms on stainless steel surfaces</td>
<td>[9864-41]</td>
</tr>
</tbody>
</table>
Identifying fecal matter contamination in produce fields using multispectral reflectance imaging under ambient solar illumination [9864-42]

The effect of the laser wavelength on collinear double pulse laser induced breakdown spectroscopy (DP-LIBS) [9864-43]
Authors

Numbers in the index correspond to the last two digits of the six-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first four digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Alexeev, A., 05
Bae, Abigail, 0Y
Baek, Insuck, 02, 10
Bal, Abdullah, 0N
Ballard, M., 05
Barbaree, James M., 0H, 12
Bauchan, Gary L., 0E
Bayona, Oswaldo, 0M
Biol, Hamidullah, 0N
Bonfazi, Giuseppe, 0J
Broadhurst, C. Leigh, 0E
Bulluck, R., 0P
Carey, C., 0P
Castro, Rodrigo, 0M
Cevallos, Juan, 0M
Chan, Dian, 0A
Chang, Hsiao-Chung, 09
Chao, Kuanglin, 0A, 0C, 0E, 0U, 0Y
Chen, I-Hsuan, 0H, 12
Chin, Bryan A., 0H, 12
Cho, Byoung-Kwan, 0D, 0Z
Cho, Hyunjeong, 11
Croitoi, Ronald, 0M
Dhakal, Sagar, 0A, 0Y
Dit, Isat Johan, 09
Du, Songtao, 0H
Erickson, M., 05
Ervin, A. M., 0P
Everard, Colm D., 16
Ewing, K. J., 0P
Fan, Shuang, 17
Fang, Zhenhuan, 07
Fu, Xiaping, 07
Gadsden, S. Andrew, 0R, 0Z
Garcia Izquierdo, Carlos, 0J
Gleason, G., 0P
Hanasoge, S., 05
He, Xueming, 07
Heighton, Lynne, 15
Hennessey, M. K., 0P
Hesketh, P. J., 05
Hong, Seok Min, 10
Horikawa, Shin, 0H, 12
Hu, Jiajia, 12
Huang, Qing, 0B, 17
Ito, Shiori, 0F
Itozaki, Hideo, 0F
Kim, Eun-Kyung, 11
Kim, Moon S., 0A, 0C, 0E, 0Y, 0Z, 10, 11, 16
Kistler, Ross, 0R
Lee, Hoonsoo, 0D, 0Z, 10, 11, 16
Lefcourt, Alan M., 0R
Levy, L., 0P
Li, Richard, 06
Lim, Hyoun-Sub, 0D
Lin, Yangqing, 17
Li, Jing, 17
Li, Yuzhe, 0H
Lu, Renfu, 06, 0Q
Lu, Yuzhen, 0E
Mills, Z., 05
Miyato, Yuji, 0F
Moon, Sang-Ho, 11
Mosser, L., 0P
Myers, S. W., 0P
Nguyen, Julie K., 0E, 15
Nou, Xiangwu, 15
Ochoa, Daniel, 0M
O'Donnell, Colm P., 16
Oh, Mirae, 11
Ono, Masakazu, 0F
Owen, D., 05
Peng, Yankun, 0T, 0U, 0V, 0W
Qiao, Lu, 0U, 0W
Qin, Jianwei, 0A, 0C, 0E, 0U, 0Y
Ralf, Tim, 09
Rao, Xiaojin, 07
Rasla, Siddar M., 09
Romero, Dennis, 0M
Saitler, Neil, 09
Singh, J., 0P
Sato-Akaba, Hideo, 0F
Schmidt, Walter F., 0A, 0E, 15
Serranti, Silvia, 0J
Sheflon, Daniel R., 0E
Suh, Sang-Jin, 0H
Sun, Hongwei, 0V
Sun, Kexi, 0B
Tian, Fang, 0T
Treccia, Agata, 0J
Uekawa, Katsuki, 0F
Uslu, Faruk Sukru, 0N
Vargas, German, 0M
Wang, Aichen, 0Q
Wang, Fengen, 12
Wei, Wensong, 0T, 0W
Wikle, Howard C., 0H
Conference Committee

Symposium Chair
Ming C. Wu, University of California, Berkeley (United States)

Symposium Co-chair
Majid Rabbani, Eastman Kodak Company (United States)

Conference Chairs
Moon S. Kim, USDA Agricultural Research Service (United States)
Kuanglin Chao, USDA Agricultural Research Service (United States)
Bryan A. Chin, Auburn University (United States)

Conference Program Committee
Arun K. Bhunia, Purdue University (United States)
Suming Chen, National Taiwan University (Taiwan)
Byoung-Kwan Cho, Chungnam National University (Korea, Republic of)
Stephen R. Delwiche, USDA Agricultural Research Service (United States)
Ki-Bok Kim, Korea Research Institute of Standards and Science (Korea, Republic of)
Naoshi Kondo, Kyoto University Graduate School of Agriculture (Japan)
Kurt C. Lawrence, USDA Agricultural Research Service (United States)
Kangjin Lee, National Academy of Agricultural Science (Korea, Republic of)
Alan M. Lefcourt, USDA Agricultural Research Service (United States)
Changying (Charlie) Li, The University of Georgia (United States)
Renfu Lu, USDA Agricultural Research Service (United States)
Bosoon Park, USDA Agricultural Research Service (United States)
Yankun Peng, China Agricultural University (China)
Yang Tao, University of Maryland, College Park (United States)
Gang Yao, University of Missouri-Columbia (United States)
Haibo Yao, Mississippi State University (United States)
Yibin Ying, Zhejiang University (China)
Seung-Chul Yoon, USDA Agricultural Research Service (United States)
Session Chairs

1 Pathogen Detection
 I-Hsuan Chen, Auburn University (United States)

2 Spectral Sensing Applications I
 Mi-Kyung Park, Kyungpook National University (Korea, Republic of)

3 Raman Spectroscopy and Imaging
 Renfu Lu, USDA Agricultural Research Service (United States)

4 Microbial and Chemical Contaminant Detection
 Byoung-Kwan Cho, Chungnam National University
 (Korea, Republic of)

5 Hyperspectral Imaging for Food Safety and Quality
 Seung-Chul Yoon, USDA Agricultural Research Service (United States)

6 Spectral Sensing Applications II
 Jianwei Qin, USDA Agricultural Research Service (United States)