Front Matter: Volume 9822
Contents

<table>
<thead>
<tr>
<th>SESSION 1</th>
<th>MATERIALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>9822 02</td>
<td>Evaluation of chalcogenide glasses for multispectral imaging in the visible, SWIR and LWIR spectral regions [9822-1]</td>
</tr>
<tr>
<td>9822 03</td>
<td>Manufacturing of transparent ZnS ceramics by powders sintering [9822-2]</td>
</tr>
<tr>
<td>9822 04</td>
<td>Rugged spinel optics for space based imaging systems [9822-3]</td>
</tr>
<tr>
<td>9822 05</td>
<td>Engineering novel infrared glass ceramics for advanced optical solutions [9822-4]</td>
</tr>
<tr>
<td>9822 07</td>
<td>Designing mid-wave infrared (MWIR) thermo-optic coefficient (dn/dT) in chalcogenide glasses [9822-6]</td>
</tr>
<tr>
<td>9822 08</td>
<td>High accuracy refractive index measurement system for germanium and silicon using the channelled spectrum method in the range of 3 to 15 (\mu m) [9822-44]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SESSION 2</th>
<th>FABRICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>9822 09</td>
<td>Chalcogenide material strengthening through the lens molding process [9822-7]</td>
</tr>
<tr>
<td>9822 0A</td>
<td>Applicability of an annealing coefficient for precision glass molding of As40Se60 [9822-8]</td>
</tr>
<tr>
<td>9822 0B</td>
<td>Molded, wafer level optics for long wave infra-red applications [9822-9]</td>
</tr>
<tr>
<td>9822 0C</td>
<td>Optimum selection of high performance mirror substrates for diamond finishing [9822-40]</td>
</tr>
<tr>
<td>9822 0D</td>
<td>Bubble formation in additive manufacturing of glass [9822-37]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SESSION 3</th>
<th>OPTICAL DESIGN AND ANALYSIS I</th>
</tr>
</thead>
<tbody>
<tr>
<td>9822 0E</td>
<td>Recent advances in joint optical-digital design for optronics applications [9822-10]</td>
</tr>
<tr>
<td>9822 0F</td>
<td>Phase mask for infrared lens athermalization: design considerations [9822-11]</td>
</tr>
<tr>
<td>9822 0G</td>
<td>Evaluate depth of field limits of fixed focus lens arrangements in thermal infrared [9822-12]</td>
</tr>
<tr>
<td>9822 0H</td>
<td>Characterization of the image quality of a wide angle MWIR f-theta objective lens by means of pixel contrast [9822-13]</td>
</tr>
</tbody>
</table>
SESSION 4 OPTICAL DESIGN AND ANALYSIS II

<table>
<thead>
<tr>
<th>Paper ID</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9822-0I</td>
<td>Experimental verification of the minimum number of diffractive zones for effective chromatic correction in the LWIR</td>
<td></td>
</tr>
<tr>
<td>9822-0J</td>
<td>Design method for a laser line beam shaper of a general 1D angular power distribution</td>
<td></td>
</tr>
<tr>
<td>9822-0K</td>
<td>Electronic eyebox for weapon sights</td>
<td></td>
</tr>
<tr>
<td>9822-0L</td>
<td>Time-resolved non-sequential ray-tracing modelling of non-line-of-sight picosecond pulse LIDAR</td>
<td></td>
</tr>
<tr>
<td>9822-0M</td>
<td>Novel silicon lenses for long-wave infrared imaging</td>
<td></td>
</tr>
<tr>
<td>9822-0N</td>
<td>Expanded IR glass map for multispectral optics designs</td>
<td></td>
</tr>
<tr>
<td>9822-0O</td>
<td>Computing the PSF with high-resolution reconstruction technique</td>
<td></td>
</tr>
</tbody>
</table>

SESSION 5 GRIN I

<table>
<thead>
<tr>
<th>Paper ID</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9822-0P</td>
<td>Advanced gradient-index lens design tools to maximize system performance and reduce SWaP</td>
<td></td>
</tr>
<tr>
<td>9822-0Q</td>
<td>Materials figure of merit for achromatic gradient index (GRIN) optics</td>
<td></td>
</tr>
<tr>
<td>9822-0R</td>
<td>IR-GRIN optics for imaging</td>
<td></td>
</tr>
<tr>
<td>9822-0S</td>
<td>Athermal achromat lens enabled by polymer gradient index optics</td>
<td></td>
</tr>
</tbody>
</table>

SESSION 6 GRIN II

<table>
<thead>
<tr>
<th>Paper ID</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9822-0U</td>
<td>Transformation optics relay lens design for imaging from a curved to a flat surface</td>
<td></td>
</tr>
<tr>
<td>9822-0V</td>
<td>ALON GRIN optics for visible-MWIR applications</td>
<td></td>
</tr>
<tr>
<td>9822-0W</td>
<td>Raman and CT scan mapping of chalcogenide glass diffusion generated gradient index profiles</td>
<td></td>
</tr>
<tr>
<td>9822-0X</td>
<td>An analytical study of thermal invariance of polymeric nanolayer gradient index optical components</td>
<td></td>
</tr>
</tbody>
</table>

SESSION 7 COATINGS AND FILTERS

<table>
<thead>
<tr>
<th>Paper ID</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9822-0Y</td>
<td>Low-loss crystalline coatings for the near- and mid-infrared</td>
<td></td>
</tr>
<tr>
<td>Session</td>
<td>Title</td>
<td>Reference</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>-----------</td>
</tr>
<tr>
<td>9822 0Z</td>
<td>HfO₂/SiO₂ multilayer based reflective and transmissive optics from the IR to the UV</td>
<td>[9822-29]</td>
</tr>
<tr>
<td>9822 11</td>
<td>Ultra-narrow bandpass filters for infrared applications with improved angle of incidence performance</td>
<td>[9822-31]</td>
</tr>
<tr>
<td>9822 12</td>
<td>Acousto-optic tunable filter as a notch filter</td>
<td>[9822-32]</td>
</tr>
<tr>
<td>9822 13</td>
<td>New counter-countermeasure techniques for laser anti-dazzling spectacles</td>
<td>[9822-33]</td>
</tr>
<tr>
<td></td>
<td>SESSION 8 OPTICAL DESIGN AND ANALYSIS III</td>
<td></td>
</tr>
<tr>
<td>9822 14</td>
<td>Exploring the imaging properties of thin lenses for cryogenic infrared cameras</td>
<td>[9822-35]</td>
</tr>
<tr>
<td>9822 15</td>
<td>The first order solutions for two configurations of discrete zoom lenses</td>
<td>[9822-43]</td>
</tr>
<tr>
<td>9822 16</td>
<td>Foveated optics</td>
<td>[9822-36]</td>
</tr>
</tbody>
</table>
Authors

Numbers in the index correspond to the last two digits of the six-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first four digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Achtner, Bertram, 0H
Adam, P., 02
Aiken, S., 05
Alexandrovski, A., 0Y
Aspelmeier, M., 0Y
Bayya, Shyam, 04, 0N, 0R, 0W
Beadle, Guy, 0N, 0Q, 0S
Benson, R., 0W
Bentley, Julie L., 0V, 15
Berg, R. H., 0W
Berman, Rebecca, 15
Bigou, D., 02
Bjork, B. J., 0Y
Bréhault, A., 02
Bristow, Douglas A., 0D
Brocker, Donovan E., 0P
Bryant, Kyle R., 16
Buff, A., 05
Burcklen, Marie-Anne, 0E
Calvez, L., 02
Campbell, Sawyer D., 0P
Chambron, Mathieu, 14
Chan, Susan, 0L
Chanda, Sheetal, 11
Chen, FanSheng, 0O
Cole, G. D., 0Y
Coleman, Garrett J., 09
Comstock, Lovell E., 0C
Deegan, J., 0L, 0W
Delboulbè, Anne, 0E
Deutsch, C., 0Y
Diaz, Frédéric, 0E
Dong, YucCui, 0O
Donval, Ariela, 13
Druart, Guillaume, 14
Duchêne, M., 02
Duhamel, François, 0E
Durand, G., 03
Easum, John A., 0P
Elmaleh, Shay, 0F
Faccio, Daniele, 0L
Fein, Howard, 0X
Fennig, Eryn A., 15
Fisher, Tali, 13
Flynn, Richard A., 0Q, 0S
Follman, D., 0Y
Franks, John, 0B
Franz, C., 0Y
Fredell, Markus, 11

Gariepy, Genevieve, 0L
Gibson, Daniel, 0N, 0R, 0W
Gilbert, Luke J., 0D
Gleason, Benn, 07
Goldman, Lee M., 0V
Goldstein, Jonathan T., 0D
Goudail, François, 0E
Greenhalgh, Catherine, 0K
Gross, N., 0W
Gross, Noam, 13
Gruoso, Tatiana, 14
Guerineau, Nicolas, 14
Gupta, Neelam, 12
Hakmeh, N., 03
Hart, Gary A., 0Z
Heckl, O. H., 0Y
Heil, Christian, 08
Henderson, Robert, 0L
Heu, P., 0Y
Hunt, Michael, 04
Jha, Santosh, 0V
Johnson, Robert, Jr., 11
Kang, M., 05
Kim, Woohong, 04
Kintz, Gregory, 0M
Kinzel, Edward C., 0D
Kirk, A., 05
Kolov, Mikhail, 0N, 0R, 0W
Landers, Robert G., 0D
Leach, Jonathan, 0L
Lee, Mane-Si, 0E
Lee, Stephen T., 0L
Lemonnier, Frabelle, 0E
Lepkowicz, Richard, 0U
Leprêtre, François, 0E
Lindberg, G. P., 0W
Lipman, Ofir, 13
Loiseaux, Brigitte, 0E
Lucas, Pierre, 09
Luc, Junjie, 0D
Ma, H. L., 02
Magli, Serge, 14
Mait, J. N., 0Q
Marom, Emanuel, 0F
Matallah, Noura, 14
Mayer, T., 05
McCarthy, Peter, 0V
McClain, Collin, 0R
Merdignac-Conanec, O., 03
Miklos, Robert, OR
Millet, Philippe, OE
Milojkovic, P., OQ
Moore, Duncan T., OV, 15
Musgraves, J. David, OS
Nag, Nagendra, OV
Nag, Jogender, OP
Neifeld, Mark, OU
Nelson, J., O9
Nguyen, Vinh, ON, OR, OW
Nobes, Ryan, OK
Novak, Jacklyn, OA
Novak, Spencer, OA
Olson, Craig, 15
Oron, Moshe, 13
Oudard, Jean Francois, OZ
Oved, A., OJ
Oved, E., OJ
Pain, T., O2
Pantano, C., O5
Partouche, Eran, 13
Peters, Daniel C., OD
Petersen, Kurt, OM
Petropavlovskiy, Dmily, 15
Plunkett, Simon, O4
Pogrebnyakov, A., O5
Ponting, Michael, OX
Rahmilow, Thomas D., Jr., 11
Ramsey, J. L., OI
Richardson, Kathleen, O5, O7
Rivero-Baleine, C., O5
Rollin, J., O2
Roy, Brian P., OZ
Salvaggio, P. S., OW
Sanghera, Jasbinder, O4, ON, OR, OW
Satri, Suri, OY
Sauer, Hervé, OE
Schmidt, Greg R., OV
Schuster, Norbert, OG
Scordato, M., O9
Sisken, Laura, O5, O7
Smith, Charmayne, O5, O7
Smith, M., OI
Sonderhouse, L., OY
Sroka, Adam, OL
Stephanou, Philip, OM
Steven, Samuel J., 15
Stover, Erik, OA
Straube, Hilmar, O8
Su, Xiaofeng, O0
Sutherland, James S., OC
Swisher, A., O5
Symmons, Alan, OA
Szapiei, Stan, OK
Turpin, Jeremiah P., OP
Urba, Augustine M., OD
Verdet, Sebastien, 14
Villalobos, Guillermo, 04
Wachtel, P., O5
Wagner, Kevin, OK
Walsh, K. F., OI
Wamboldt, Leonard, OC, OZ
Wang, Jue, OZ
Warburton, Ryan, OL
Weinstein, B. A., OW
Werner, Douglas H., OS, OP
Wetherill, Julia, OU
Woodard, Kenneth S., OC
Xue, Yulong, OO
Yang, Xue, OO
Ye, J., OY
Yee, Anthony J., 15
Zahreddine, Ramzi, OU
Zhang, W., OY
Zhang, X.-H., O2, O3
Zhao, Yang, 15
Conference Committee

Symposium Chair

David A. Logan, BAE Systems (United States)

Symposium Co-chair

Donald A. Reago Jr., U.S. Army Night Vision & Electronic Sensors Directorate (United States)

Conference Chairs

Jay N. Vizgaitis, optX imaging system (United States)
Bjørn F. Andresen, RICOR Cryogenic & Vacuum Systems (Israel)
Peter L. Marasco, Air Force Research Laboratory (United States)
Jasbinder S. Sanghera, U.S. Naval Research Laboratory (United States)
Miguel P. Snyder, U.S. Army Night Vision & Electronic Sensors Directorate (United States)

Conference Program Committee

Christopher C. Alexay, StingRay Optics, LLC (United States)
Guy Beadie, U.S. Naval Research Laboratory (United States)
Kyle R. Bryant, U.S. Army AMRDEC (United States)
Robert B. Chipper, Raytheon EO Innovations (United States)
John P. Deegan, Rochester Precision Optics, LLC (United States)
Mark Durham, DRS Technologies, Inc. (United States)
Anatoly M. Filachev, Orion Research-and-Production Association (Russian Federation)
John M. Hall, U.S. Army Night Vision & Electronic Sensors Directorate (United States)
Stephen T. Lee, Thales Optronics Ltd. (United Kingdom)
Craig Olson, L-3 Communications (United States)
Harbinder Rana, Defence Science and Technology Laboratory (United Kingdom)
Clara Rivero-Baleine, Lockheed Martin Missiles and Fire Control (United States)
Joël Rollin, Thales Angénieux S.A. (France)
Harry H. Schlemmer, Airbus DS Optronics GmbH (Germany)
Doron Sturlesi, Rafael Advanced Defense Systems Ltd. (Israel)
Alan Symmons, LightPath Technologies, Inc. (United States)
Stan Szapiel, Raytheon ELCAN Optical Technologies (Canada)
Nicholas A. Thompson, Qioptiq Ltd. (United Kingdom)
Jue Wang, Corning Specialty Materials, Inc. (United States)
Session Chairs

1 Materials
 Jasbinder S. Sanghera, U.S. Naval Research Laboratory
 (United States)
 Clara Rivero-Baleine, Lockheed Martin Missiles and Fire Control
 (United States)

2 Fabrication
 John P. Deegan, Rochester Precision Optics, LLC (United States)
 Alan Symmons, LightPath Technologies, Inc. (United States)

3 Optical Design and Analysis I
 Kyle R. Bryant, U.S. Army Aviation & Missile Research, Development &
 Engineering Center (United States)
 Doron Sturlesi, Rafael Advanced Defense Systems Ltd. (Israel)

4 Optical Design and Analysis II
 Kyle R. Bryant, U.S. Army Aviation & Missile Research, Development &
 Engineering Center (United States)
 Doron Sturlesi, Rafael Advanced Defense Systems Ltd. (Israel)

5 GRIN I
 Craig Olson, L-3 Communications (United States)
 Guy Beadie, U.S. Naval Research Laboratory (United States)

6 GRIN II
 Peter L. Marasco, Air Force Research Laboratory (United States)
 Guy Beadie, U.S. Naval Research Laboratory (United States)

7 Coatings and Filters
 Jue Wang, Corning Advanced Optics (United States)
 Miguel P. Snyder, U.S. Army Night Vision & Electronic Sensors
 Directorate (United States)

8 Optical Design and Analysis III
 Miguel P. Snyder, U.S. Army Night Vision & Electronic Sensors
 Directorate (United States)