Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XXI

Steven S. Bishop
Jason C. Isaacs
Editors

18–21 April 2016
Baltimore, Maryland, United States

Sponsored and Published by
SPIE
Contents

ix Authors
xi Conference Committee

SESSION 1 HAND-HELD SENSOR DESIGN, AND SYSTEMS TESTING

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>9823 02</td>
<td>Coil design considerations for a high-frequency electromagnetic induction sensing instrument [9823-1]</td>
</tr>
<tr>
<td>9823 03</td>
<td>Improved feedback amplifier for electromagnetic induction sensors [9823-2]</td>
</tr>
<tr>
<td>9823 04</td>
<td>Formulation for a practical implementation of electromagnetic induction coils optimized using stream functions [9823-3]</td>
</tr>
<tr>
<td>9823 05</td>
<td>Dynamic EMI sensor platform for digital geophysical mapping and automated clutter rejection for CONUS and OCONUS applications [9823-4]</td>
</tr>
</tbody>
</table>

SESSION 2 HAND-HELD EMI SENSING I

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>9823 07</td>
<td>Landmine detection with Bayesian cross-categorization on point-wise, contextual and spatial features [9823-6]</td>
</tr>
<tr>
<td>9823 08</td>
<td>A high power EMI sensor for detecting and classifying small and deep targets [9823-7]</td>
</tr>
<tr>
<td>9823 09</td>
<td>Adaptive coherence estimator (ACE) for explosive hazard detection using wideband electromagnetic induction (WEMI) [9823-8]</td>
</tr>
<tr>
<td>9823 0A</td>
<td>Buried object detection using handheld WEMI with task-driven extended functions of multiple instances [9823-9]</td>
</tr>
</tbody>
</table>

SESSION 3 HAND-HELD EMI SENSING II

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>9823 0C</td>
<td>Computation of the eddy-current modes of three-dimensional conducting bodies [9823-11]</td>
</tr>
<tr>
<td>9823 0D</td>
<td>Carbon fiber and void detection using high-frequency electromagnetic induction techniques [9823-12]</td>
</tr>
<tr>
<td>9823 0E</td>
<td>Improved electromagnetic induction processing with novel adaptive matched filter and matched subspace detection [9823-13]</td>
</tr>
<tr>
<td>SESSION 4</td>
<td>THZ TIME DOMAIN SPECTROSCOPY OF OBJECTS, AND 3D CONTRABAND SCANNING</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td>9823 0F</td>
<td>Pulsed THz TDS of objects covered by disordered structure [9823-14]</td>
</tr>
<tr>
<td>9823 0G</td>
<td>Evaluation of the use of 3D printing and imaging to create working replica keys [9823-15]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SESSION 5</th>
<th>HAND-HELD GPR TECHNOLOGIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>9823 0H</td>
<td>Curvelet filter based prescreener for explosive hazard detection in hand-held ground penetrating radar [9823-16]</td>
</tr>
<tr>
<td>9823 0I</td>
<td>Background adaptive division filtering for hand-held ground penetrating radar [9823-17]</td>
</tr>
<tr>
<td>9823 0K</td>
<td>On the use of log-gabor features for subsurface object detection using ground penetrating radar [9823-19]</td>
</tr>
<tr>
<td>9823 0L</td>
<td>Comparative analysis of short and long GPR pulses for landmine detection [9823-20]</td>
</tr>
<tr>
<td>9823 0M</td>
<td>A label propagation approach for detecting buried objects in handheld GPR data [9823-21]</td>
</tr>
<tr>
<td>9823 0N</td>
<td>Detecting buried explosive hazards with handheld GPR and deep learning [9823-22]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SESSION 6</th>
<th>EM IMAGING SENSORS AND TECHNIQUES</th>
</tr>
</thead>
<tbody>
<tr>
<td>9823 0O</td>
<td>Advanced EMI models for survey data processing: targets detection and classification [9823-23]</td>
</tr>
<tr>
<td>9823 0P</td>
<td>Electromagnetic induction imaging of concealed metallic objects by means of resonating circuits [9823-24]</td>
</tr>
<tr>
<td>9823 0Q</td>
<td>Electromagnetic imaging with atomic magnetometers: a novel approach to security and surveillance [9823-25]</td>
</tr>
<tr>
<td>9823 0R</td>
<td>Enhanced buried UXO detection via GPR/EMI data fusion [9823-26]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SESSION 7</th>
<th>HAND-HELD SENSOR FUSION TECHNIQUES</th>
</tr>
</thead>
<tbody>
<tr>
<td>9823 0S</td>
<td>Identification of improvised explosives residues using physical-chemical analytical methods under real conditions after an explosion [9823-28]</td>
</tr>
<tr>
<td>9823 0T</td>
<td>A comparison of robust principal component analysis techniques for buried object detection in downward looking GPR sensor data [9823-29]</td>
</tr>
<tr>
<td>9823 0U</td>
<td>Evaluation of a biomimetic optical-filter based chemical sensor for detection of hazardous chemical vapors in the infrared [9823-31]</td>
</tr>
<tr>
<td>SESSION 8</td>
<td>CHEMICAL DETECTION: JOINT SESSION WITH CONFERENCES 9823 AND 9824</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td>9823 0V</td>
<td>Laser induced x-ray ‘RADAR’ particle physics model [9823-32]</td>
</tr>
<tr>
<td>9823 0Y</td>
<td>NQR detection of explosive simulants using RF atomic magnetometers [9823-35]</td>
</tr>
<tr>
<td>9823 OZ</td>
<td>Polarization enhanced Nuclear Quadrupole Resonance with an atomic magnetometer [9823-36]</td>
</tr>
<tr>
<td>9823 11</td>
<td>Effectiveness of laser sources for contactless sampling of explosives [9823-38]</td>
</tr>
<tr>
<td>9823 12</td>
<td>Digital micromirror devices in Raman trace detection of explosives [9823-39]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SESSION 9</th>
<th>ROAD DETECTION AND SCENE MODELING</th>
</tr>
</thead>
<tbody>
<tr>
<td>9823 13</td>
<td>Improving the detection of explosive hazards with LIDAR-based ground plane estimation [9823-40]</td>
</tr>
<tr>
<td>9823 14</td>
<td>3D environment modeling and location tracking using off-the-shelf components [9823-41]</td>
</tr>
<tr>
<td>9823 15</td>
<td>Road detection in arid environments using uniformly distributed random based features [9823-42]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SESSION 10</th>
<th>OVERHEAD SENSING</th>
</tr>
</thead>
<tbody>
<tr>
<td>9823 16</td>
<td>Integrated use of field spectroscopy and satellite remote sensing for defence and security applications in Cyprus (Invited Paper) [9823-43]</td>
</tr>
<tr>
<td>9823 17</td>
<td>Roadside IED detection using subsurface imaging radar and rotary UAV [9823-44]</td>
</tr>
<tr>
<td>9823 18</td>
<td>Integration of micro-fabricated atomic magnetometers on military systems [9823-45]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SESSION 11</th>
<th>DOWN-LOOKING GPR TECHNIQUES</th>
</tr>
</thead>
<tbody>
<tr>
<td>9823 19</td>
<td>Attribute-driven transfer learning for detecting novel buried threats with ground-penetrating radar [9823-46]</td>
</tr>
<tr>
<td>9823 1A</td>
<td>Algorithm development for deeply buried threat detection in GPR data [9823-47]</td>
</tr>
<tr>
<td>9823 1B</td>
<td>Enhancements to GPR buried UXO detection using the apex-shifted hyperbolic radon transform [9823-48]</td>
</tr>
<tr>
<td>9823 1C</td>
<td>A fisher vector representation of GPR data for detecting buried objects [9823-49]</td>
</tr>
<tr>
<td>9823 1D</td>
<td>Fusion of KLMS and blob based pre-screener for buried landmine detection using ground penetrating radar [9823-50]</td>
</tr>
<tr>
<td>9823 1E</td>
<td>Preprocessing of A-scan GPR data based on energy features [9823-51]</td>
</tr>
<tr>
<td>SESSION 12</td>
<td>FORWARD LOOKING LWIR FUSION, EVALUATION LWIR AND MWIR, AND LDV SEISMIC PROCESSING</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>9823 1F</td>
<td>Anomaly detection using classified eigenblocks in GPR image [9823-52]</td>
</tr>
<tr>
<td>9823 1G</td>
<td>Multiple kernel based feature and decision level fusion of iECO individuals for explosive hazard detection in FLIR imagery [9823-53]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SESSION 13</th>
<th>FORWARD LOOKING GPR TECHNIQUES</th>
</tr>
</thead>
<tbody>
<tr>
<td>9823 1I</td>
<td>A feature learning approach for classifying buried threats in forward looking ground penetrating radar data [9823-56]</td>
</tr>
<tr>
<td>9823 1J</td>
<td>Convolutional neural network based sensor fusion for forward looking ground penetrating radar [9823-57]</td>
</tr>
<tr>
<td>9823 1K</td>
<td>Using queuing models to aid design and guide research effort for multimodality buried target detection systems [9823-58]</td>
</tr>
<tr>
<td>9823 1L</td>
<td>Sequential feature selection for detecting buried objects using forward looking ground penetrating radar [9823-60]</td>
</tr>
<tr>
<td>9823 1M</td>
<td>Spectral diversity for ground clutter mitigation in forward-looking GPR [9823-61]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SESSION 14</th>
<th>SIDE-SCANNING SENSING, DATA PROCESSING, AND PROGRAMS I</th>
</tr>
</thead>
<tbody>
<tr>
<td>9823 1N</td>
<td>Multiple instance learning for buried hazard detection [9823-62]</td>
</tr>
<tr>
<td>9823 1O</td>
<td>Multiple-modality program for standoff detection of roadside hazards [9823-63]</td>
</tr>
<tr>
<td>9823 1P</td>
<td>Advances in ground vehicle-based LADAR for standoff detection of road-side hazards [9823-64]</td>
</tr>
<tr>
<td>9823 1Q</td>
<td>Explosive hazard detection using synthetic aperture acoustic sensing [9823-65]</td>
</tr>
<tr>
<td>9823 1R</td>
<td>Comparison of spatial frequency domain features for the detection of side attack explosive ballistics in synthetic aperture acoustics [9823-66]</td>
</tr>
<tr>
<td>9823 1S</td>
<td>Detection of landmines and UXO using advanced synthetic aperture radar technology [9823-67]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SESSION 15</th>
<th>SIDE-SCANNING SENSING, DATA PROCESSING, AND PROGRAMS II</th>
</tr>
</thead>
<tbody>
<tr>
<td>9823 1T</td>
<td>Statistically normalized coherent change detection for synthetic aperture sonar imagery [9823-68]</td>
</tr>
<tr>
<td>9823 1U</td>
<td>Optimized passive sonar placement to allow improved interdiction [9823-69]</td>
</tr>
</tbody>
</table>
Risk-based scheduling of multiple search passes for UUVs [9823-70]

Edge detection of red hind grouper vocalizations in the littorals [9823-71]

Multi-input multi-output waveform optimization for synthetic aperture sonar [9823-72]
Authors

Numbers in the index correspond to the last two digits of the six-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first four digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Agapiou, Athos, 16
Aggarwal, Ishwar D., 0U
Ågren, Matilda, 12
Akamalov, Artem E., 11
Aksoy, Serkan, 0L
Alexson, Dimitri A., 0Y, 0Z
Alvey, Brendan, 09
Anderson, Derek T., 0H, 0I, 1G, 1R
Ball, John E., 0H, 0I, 1R
Barrall, Geoffrey A., 0Z
Barrowes, Benjamin E., 02, 08, 0D, 0O
Bartlett, P. A., 0P
Baydar, Bora, 1D
Baylog, John G., 1V
Beaujean, Pierre-Philippe, 1W
Bennett, Hollis J., 02, 0D
Beroun, Ivo, 0S
Besaw, Lance E., 0N
Bischof, Florian, 1S
Brewster, E., 1Q
Buck, A., 13
Burns, Brian P., 1L
Burns, Joseph, 0R, 0T
Camilo, Joseph A., 1I
Chen, David, 1J
Chistyakov, Alexander A., 1I
Close, Ryan, 1O, 1P
Collins, Leslie M., 19, 1A, 1I, 1K
Cook, Matthew, 09, 0A
Crosskey, Miles, 1J
Deans, Cameron, 0Q
Deas, R., 0V
Deguzman, P. C., 0U
Dill, Stephan, 1S
Dogan, Mesut, 1E
Dowdy, Josh, 1R
Dunnill, Kevin F., 0U
Espi, Michelle A., 0Z
Ewing, Kenneth J., 0U
Frigui, Hichem, 0M, 1C
Gabbay, Jonathan E., 0C
Gallivan, Kyle A., 1X
Gandhe, Avinash, 0T
Gilmott, Martin, 12
G-Michael, Tesfaye, 1T
Guizzoni, R., 0P
Hadjimitsis, Diotantas G., 16
Harris, Samuel, 0K
Havens, Timothy C., 0R, 0T, 1G, 1M, 1N, 1R
Hayes, Charles Ethan, 0E
Heinzel, Andreas, 1S
Ho, Dominic K. C., 09, 0A, 0K, 1L
Hollinger, Jim, 1P
Hu, Lequn, 1G
Huang, Wen, 1X
Hussain, Sarah, 0Q
Johnson, Bruce A., 1U
Karem, Andrew, 1C
Keller, James M., 13, 15, 1G, 1L, 1Q, 1R
Kelly, Jack, 0R
Keranen, Joe, 05
Kerlin, Scott, 0G
Kerr, Andrew J., 0E
Khalifa, Amine B., 1C
Kim, Min Ju, 1F
Kim, Seong Dae, 1F
Kotkovskii, Gennadii E., 11
Kotrly, Marek, 0S
Lai, C. P., 17
Laudato, Stephen J., 05
Le, Viet Q., 17
Lee, Matthew A., 0I
Lee, Seung-eui, 1F
Léveillé, Jasmin, 07
Lockley, D., 0V
Luke III, Robert H., 14, 1G, 1L, 1O, 1R
Major, Kevin J., 0U
Malof, Jordan M., 1A, 1I, 1K
Malone, Michael W., 0Z
Marchand, Bradley, 1X
Marchand, Melissa, 1X
Mareš, Bohumil, 0S
Marmugi, Luca, 0Q
Masarik, Matthew P., 0R, 0T, 1B
Matthews, Cameron A., 1U, 1W
McClellan, James H., 0E
Melillos, George, 16
Mhaskar, Rahul, 18
Michaelides, Silas, 16
Middleton, Seth, 1O, 1P
Miller, Jonathan S., 05, 1B
Monti, Mark C., 0Y, 0Z
Morton, Kenneth, 1J
Moss, R., 0V
Murray, Bryce, 1G
Nazlı, Hakkı, 0L
Neely, D., 0V
Nguyen, Son, 1P
Nordberg, Markus, 12
Okamitsu, Jeffrey K., 0Y, 0Z
O'Neill, Kevin A., 02, 08, 0D, 0O
Östmark, Henrik, 12
Öztürk, Serhat, 1D
Papadavid, George, 16
Parker, Brian, 0H
Peichl, Markus, 1S
Pinar, Anthony, 0T, 1N
Plodpradista, P., 15
Popescu, M., 13, 15, 1Q
Poutous, Menelaos K., 0U
Price, Stanton R., 1G
Prodromou, Maria, 16
Prouty, Mark, 18
Qin, Yexian, 17
Reed, Mark A., 04
Reichman, Daniël, 1A
Reid, Graham, 0M
Ren, Yu-Jiun, 17
Renzoni, Ferruccio, 0P, 0Q
Rice, Joseph, 0T, 1N
Roberts, Rodney G., 1T
Rupp, Ronald, 1P
Rusby, D., 0V
Sakaguchi, Rayn, 1J
Sanghera, Jasbinder S., 0U
Schreiber, Eric, 1S
Schultz, Gregory, 05, 18
Schulz, Timothy J., 1M, 1N
Scott, Waymon R., 03, 04, 0C, 0E
Shamatava, Irma, 0B, 0O
Shaw, Darren, 1L
Shubitidze, Fridon, 02, 08, 0D, 0O
Sigman, John Brevard, 02, 08, 0D, 0O
Simms, Janet E., 02, 0D
Steinhurst, Daniel A., 08
Stone, Kevin, 1L, 1Q
Straub, Jeremy, 0G
Suri, Rajiv, 1O
Svanqvist, Mattias, 12
Temiloğlu, Eyyup, 0L
Theilen, Brian T., 0R, 0T, 1B
Themistocleous, Kyriacos, 16
Trofimov, V. A., 0F
Tucker, J. Derek, 1T
Turhan-Sayan, Gonul, 1E
Turková, Ivana, 0S
Twumasi, Jones O., 17
Varentsova, Svetlana A., 0F
Vessey, Alyssa, 1P
Walenz, Brett, 1J
Wang, Yinlin, 02, 08, 0D, 0O
Watson, J. C., 0P
Webb, Adam, 1M, 1N
Wettergren, Thomas A., 1V
White, Julie L., 0H, 0I
Williams, Kathryn, 1O, 1P
Wilson, L. A., 0V
Xique, Ismael J., 1B
Yu, Ssu-Hsin, 07
Yu, Tzuyang, 17
Yüksel, Seniha Esen, 1D
Yule, Donald E., 02, 0D
Zagursky, D. Yu., 0F
Zakharova, I. G., 0F
Zare, Alina, 09, 0A, 0K
Conference Committee

Symposium Chair

David A. Logan, BAE Systems (United States)

Symposium Co-chair

Donald A. Reago Jr., U.S. Army Night Vision & Electronic Sensors Directorate (United States)

Conference Chairs

Steven S. Bishop, U.S. Army Night Vision & Electronic Sensors Directorate (United States)
Jason C. Isaacs, Naval Surface Warfare Center Panama City Division (United States)

Conference Program Committee

Benjamin E. Barrowes, U.S. Army Engineer Research and Development Center (United States)
Ryan R. Close, U.S. Army Night Vision & Electronics Sensors Directorate (United States)
Leslie M. Collins, Duke University (United States)
Gerald J. Dobbeck, Naval Surface Warfare Center Panama City Division (United States)
Anthony A. Faust, Defence Research and Development Canada, Suffield (Canada)
Tesfaye G-Michael, Naval Surface Warfare Center Panama City Division (United States)
Gregory Garcia, Naval Surface Warfare Center Panama City Division (United States)
James M. Keller, University of Missouri-Columbia (United States)
Aaron LaPointe, U.S. Army Night Vision & Electronic Sensors Directorate (United States)
Henric Östmark, Swedish Defence Research Agency (Sweden)
Motoyuki Sato, Tohoku University (Japan)
Waymond R. Scott Jr., Georgia Institute of Technology (United States)
Richard C. Weaver, U.S. Army Night Vision & Electronic Sensors Directorate (United States)
Session Chairs

1 Hand-Held Sensor Design, and Systems Testing
Ken E. Yasuda, U.S. Army Night Vision & Electronic Sensors
Directorate (United States)
Lance E. Besaw, Applied Research Associates, Inc. (United States)

2 Hand-Held EMI Sensing I
Ken E. Yasuda, U.S. Army Night Vision & Electronic Sensors
Directorate (United States)
Joe Keranen, White River Technologies, Inc. (United States)

3 Hand-Held EMI Sensing II
Brian C. Barlow, U.S. Army Night Vision & Electronic Sensors
Directorate (United States)
Gregory Schultz, White River Technologies, Inc. (United States)

4 THz Time Domain Spectroscopy of Objects, and 3D Contraband Scanning
Brian C. Barlow, U.S. Army Night Vision & Electronic Sensors
Directorate (United States)
Dominic K. Ho, University of Missouri (United States)

5 Hand-held GPR Technologies
Waymond R. Scott Jr., Georgia Institute of Technology (United States)
Rajiv Suri, U.S. Army RDECOM CERDEC NVESD (United States)

6 EM Imaging Sensors and Techniques
James C. Shpil, U.S. Army Night Vision & Electronic Sensors
Directorate (United States)
Alina Zare, University of Missouri (United States)

7 Hand-held Sensor Fusion Techniques
Ken E. Yasuda, U.S. Army Night Vision & Electronic Sensors
Directorate (United States)
Lance E. Besaw, Applied Research Associates, Inc. (United States)

8 Chemical Detection: Joint Session with conferences 9823 and 9824
Vincent P. Schnee, U.S. Army Night Vision & Electronic Sensors
Directorate (United States)
Anthony A. Faust, Defence Research and Development Canada,
Suffield (Canada)

Proc. of SPIE Vol. 9823 982301-12
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 30 Jan 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use
9 Road Detection and Scene Modeling
 Mihail Popescu, University of Missouri (United States)
 Christopher Marshall, U.S. Army Night Vision & Electronic Sensors
 Directorate (United States)

10 Overhead Sensing
 Seth Middleton, U.S. Army Night Vision & Electronic Sensors
 Directorate (United States)
 Mark W. Hibbard, CoVar Applied Technologies, Inc. (United States)

11 Down-looking GPR Techniques
 Leslie M. Collins, Duke University (United States)
 Kathryn A. Williams, U.S. Army Night Vision & Electronic Sensors
 Directorate (United States)

12 Forward Looking LWIR Fusion, Evaluation LWIR and MWIR, and LDV
 Seismic Processing
 Kenneth D. Morton Jr., CoVar Research (United States)
 Ryan R. Close, U.S. Army RDECOM CERDEC NVESD (United States)

13 Forward Looking GPR Techniques
 Miles Crosskey, CoVar Applied Technologies, Inc. (United States)
 Brian P. Burns, U.S. Army RDECOM CERDEC NVESD (United States)

14 Side-scanning Sensing, Data Processing, and Programs I
 Directorate (United States)
 Timothy C. Havens, Michigan Technological University (United States)

15 Side-scanning Sensing, Data Processing, and Programs II
 Julia Gazagnaire, Naval Surface Warfare Center Panama City
 Division (United States)
 Tesfaye G-Michael, Naval Surface Warfare Center Panama City
 Division (United States)