Front Matter: Volume 9899
Optical Sensing and Detection IV

Francis Berghmans
Anna G. Mignani
Editors

3–7 April 2016
Brussels, Belgium

Sponsored by
SPIE

Cosponsored by
B-PHOT—Brussels Photonics Team (Belgium)
Research Foundation Flanders (Belgium)
Visit Brussels (Belgium)

Cooperating Organisations
Photonics 21 (Germany)
EOS—European Optical Society (Germany)
KTN—the Knowledge Transfer Network (United Kingdom)
Graphene Flagship (Belgium)
Photonics Public Private Partnership (Belgium)

Published by
SPIE

Volume 9899
Contents

ix Authors
xiii Conference Committee

SESSION 1 GEOMETRIC AND DYNAMOMETRIC SENSORS

9899 03 Spatial filtering velocimetry for real-time out-of-plane displacement measurements [9899-2]
9899 05 Comparison of LASER and LED illumination for fiber optic fringe projection [9899-4]
9899 06 High-accuracy absolute distance measurement with a mode-resolved optical frequency comb [9899-5]
9899 07 Frequency comb-based depth imaging assisted by a low-coherence optical interferometer [9899-6]

SESSION 2 DETECTOR AND IMAGER TECHNOLOGY AND PHYSICS I

9899 08 Near-infrared photodetectors based on PbS colloidal quantum dots (Invited Paper) [9899-7]

SESSION 3 DETECTOR AND IMAGER TECHNOLOGY AND PHYSICS II

9899 08 Seven channel wavelength demultiplexer using a tandem a:SiC-H/a:Si-H photo sensor [9899-10]
9899 0C A logarithmic low dark current CMOS pixel [9899-11]
9899 0D LinoSPAD: a time-resolved 256×1 CMOS SPAD line sensor system featuring 64 FPGA-based TDC channels running at up to 8.5 giga-events per second [9899-12]
9899 0E Pixel-level continuous-time incremental sigma-delta A/D converter for THz sensors [9899-13]

SESSION 4 DETECTOR AND IMAGER TECHNOLOGY AND PHYSICS III

9899 0F Added transmission capacity in VLC systems using white RGB based LEDs and WDM devices [9899-14]
9899 0G MUSIC: an 8 channel readout ASIC for SiPM arrays [9899-15]
SESSION 5 MID-INFRARED SPECTROSCOPY

9899 0K Application of supercontinuum radiation for mid-infrared spectroscopy (Invited Paper) [9899-19]
9899 0L Method for enhanced infrared spectroscopy of molecules with nanorod arrays [9899-20]
9899 0M Sensitive detection of methane at 3.3 μm using an integrating sphere and interband cascade laser [9899-21]
9899 0O Electron beam irradiation of materials and components to be used in mid-IR spectroscopy [9899-23]

SESSION 6 SPECTROSCOPY AND APPLICATIONS I

9899 0P Hyperspectral imaging and its applications (Invited Paper) [9899-24]
9899 0Q Standoff detection of gases using infrared laser spectroscopy [9899-25]
9899 0R Laser-induced breakdown spectroscopy for the remote detection of explosives at level of fingerprints [9899-27]
9899 0S Innovative quartz enhanced photoacoustic sensors for trace gas detection [9899-28]
9899 0T A simple configuration for static Fourier transform infrared spectrometers (Best Student Paper Award) [9899-29]

SESSION 7 SPECTROSCOPY AND APPLICATIONS II

9899 0U Investigation of stratigraphic mapping in paintings using micro-Raman spectroscopy [9899-30]
9899 0W Non-destructive testing of composite materials using terahertz time-domain spectroscopy [9899-32]
9899 0X One- and two-photon induced fluorescence spectroscopy enabling the detection of localized aflatoxin contamination in individual maize kernels [9899-33]
9899 0Y The influence of additional water content towards the spectroscopy and physicochemical properties of genus Apis and stingless bee honey [9899-34]
SESSION 8
OPTICAL FIBRE-BASED SENSORS I

<table>
<thead>
<tr>
<th>9899 0Z</th>
<th>Enabling technologies for fiber optic sensing (Invited Paper) [9899-35]</th>
</tr>
</thead>
<tbody>
<tr>
<td>9899 11</td>
<td>Strain sensing with femtosecond inscribed FBGs in perfluorinated polymer optical fibers [9899-37]</td>
</tr>
<tr>
<td>9899 12</td>
<td>Determination of the magnetic field induced circular birefringence using the Mueller matrix of FBGs [9899-38]</td>
</tr>
<tr>
<td>9899 13</td>
<td>Modelling and simulation of a fibre Bragg grating strain sensor based on a magnetostrictive actuator principle [9899-39]</td>
</tr>
</tbody>
</table>

SESSION 9
OPTICAL FIBRE-BASED SENSORS II

<table>
<thead>
<tr>
<th>9899 15</th>
<th>Cost-effective FBG interrogation combined with cepstral-based signal processing for railway traffic monitoring [9899-41]</th>
</tr>
</thead>
<tbody>
<tr>
<td>9899 16</td>
<td>High sensitivity refractive index sensor based on large-angle tilted fiber grating with carbon nanotube deposition [9899-42]</td>
</tr>
<tr>
<td>9899 17</td>
<td>Formaldehyde sensing with plasmonic near-infrared optical fiber grating sensors [9899-43]</td>
</tr>
</tbody>
</table>

SESSION 10
OPTICAL FIBRE-BASED SENSORS III

<table>
<thead>
<tr>
<th>9899 18</th>
<th>Zinc oxide coated optical fiber long period gratings for sensing of volatile organic compounds [9899-44]</th>
</tr>
</thead>
<tbody>
<tr>
<td>9899 1B</td>
<td>Hydrogel coated fiber Bragg grating based chromium sensor [9899-47]</td>
</tr>
</tbody>
</table>

SESSION 11
OPTICAL FIBRE-BASED SENSORS IV

<table>
<thead>
<tr>
<th>9899 1C</th>
<th>High temperature measurements in irradiated environment using Raman fiber optics distributed temperature sensing [9899-48]</th>
</tr>
</thead>
<tbody>
<tr>
<td>9899 1D</td>
<td>A novel structure optical fiber radiation dosimeter for radiotherapy applications [9899-49]</td>
</tr>
<tr>
<td>9899 1E</td>
<td>Strain tuneable whispering gallery mode resonators in the estimation of the elasto-optic parameters of soft materials [9899-50]</td>
</tr>
<tr>
<td>9899 1F</td>
<td>Recycling optical fibers for sensing [9899-51]</td>
</tr>
<tr>
<td>9899 1G</td>
<td>Multiplexed refractive index-based sensing using optical fiber micro-cavities [9899-52]</td>
</tr>
<tr>
<td>9899 1H</td>
<td>High temperature fiber sensor using the interference effect within a suspended core microstructured optical fiber [9899-53]</td>
</tr>
<tr>
<td>SESSION 12</td>
<td>RESONANT STRUCTURE-BASED SENSORS</td>
</tr>
<tr>
<td>------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>9899 1I</td>
<td>Resonant spatial tracking using nanostructured resonant waveguide grating for multispectral sensing by imaging [9899-54]</td>
</tr>
<tr>
<td>9899 1J</td>
<td>Optimizing detection limits of optical resonator based sensors by optimization of real-time measurements of resonators response [9899-55]</td>
</tr>
<tr>
<td>9899 1L</td>
<td>Application of optical whispering gallery mode resonators for rotation sensing [9899-57]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SESSION 13</th>
<th>SENSORS FOR MATERIAL CHARACTERISATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>9899 1M</td>
<td>Transmission optical coherence tomography sensing [9899-58]</td>
</tr>
<tr>
<td>9899 1N</td>
<td>Two-dimensional damage mapping of a glass-epoxy composite test sample by optical transmission analysis [9899-59]</td>
</tr>
<tr>
<td>9899 1O</td>
<td>Using linear polarization for sensing and monitoring nanoparticle purity [9899-60]</td>
</tr>
<tr>
<td>9899 1P</td>
<td>Optical sensing of peroxide using ceria nanoparticles via fluorescence quenching technique [9899-61]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SESSION 14</th>
<th>MOLECULAR SENSORS AND BIOSENSORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>9899 1R</td>
<td>Highly sensitive detection using microring resonator and nanopores [9899-64]</td>
</tr>
<tr>
<td>9899 1S</td>
<td>Biosensors based on Si3N4 asymmetric Mach-Zehnder interferometers [9899-65]</td>
</tr>
<tr>
<td>9899 1T</td>
<td>Strong interaction of molecular vibrational overtones with near-guided surface plasmon polariton [9899-66]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>POSTER SESSION</th>
</tr>
</thead>
<tbody>
<tr>
<td>9899 1W</td>
</tr>
<tr>
<td>9899 1X</td>
</tr>
<tr>
<td>9899 1Y</td>
</tr>
<tr>
<td>9899 1Z</td>
</tr>
<tr>
<td>9899 20</td>
</tr>
<tr>
<td>9899 21</td>
</tr>
<tr>
<td>9899 22</td>
</tr>
<tr>
<td>9899 23</td>
</tr>
<tr>
<td>9899 28</td>
</tr>
<tr>
<td>9899 2A</td>
</tr>
<tr>
<td>9899 2B</td>
</tr>
<tr>
<td>9899 2C</td>
</tr>
<tr>
<td>9899 2E</td>
</tr>
<tr>
<td>9899 2F</td>
</tr>
<tr>
<td>9899 2G</td>
</tr>
<tr>
<td>9899 2H</td>
</tr>
<tr>
<td>9899 2I</td>
</tr>
<tr>
<td>9899 2J</td>
</tr>
<tr>
<td>9899 2M</td>
</tr>
<tr>
<td>9899 2N</td>
</tr>
<tr>
<td>9899 2P</td>
</tr>
<tr>
<td>9899 2Q</td>
</tr>
<tr>
<td>9899 2R</td>
</tr>
<tr>
<td>9899 2S</td>
</tr>
<tr>
<td>9899 2T</td>
</tr>
</tbody>
</table>
Search a methane hydrate in the Arctic with photonics methods [9899-107]

Specifics of signal generation in receivers based on thermoelastic effect at multiple impulse exposure [9899-108]

Fast and cheap prototyping of nonstandard optical components for sensing speckle dynamics [9899-109]

Multiphysical simulations of passive ring cavities [9899-110]

Dynamic angle-measurement system for direction determining [9899-111]

Detection of bacteria using bacteriophage with hollow gold nanostructures immobilized fiber optic sensor [9899-112]

Fiber optic interferometer as a security element [9899-113]

Experimental and theoretical investigation of the effect of laser parameters on laser ablation and laser-induced plasma formation [9899-116]

System of the optic-electronic sensors for control position of the radio telescope elements [9899-117]
Authors

Numbers in the index correspond to the last two digits of the six-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first four digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Acheroy, Sophie, 2F
Aladov, Andrei V., 1X
Alberto, Nélia, 1F
Alcaraz de la Osa, Rodrigo, 1O
Almaviva, S., 0R
Alrayk, Yassmin K. A., 23
Aluculesei, Alina, 1E
André, Paulo, 1F
André, Ricardo M., 1G
Antunes, Paulo, 1F
Apostolidis, Georgios K., 0U
Arif, Raz N., 16
Babu, P. Ravindra, 2A
Badmos, Abdulbeyizir A., 16
Baranov, Yuri P., 2H
Barata, M., 0B
Bardou, Nathalie, 0L
Barreda, Angela L., 1O
Bartelt, Hartmut, 1G
Bartholmai, M., 13
Basedau, F., 13
Beauvois, Gwendal, 1C
Beck, U., 13
Bednarek, Lukas, 30
Benisty, Henri, 1I
Berghmans, Francis, 2F
Bette, Sébastien, 12
Bhattacharya, Nandini, 06
Bienstman, P., 1R
Blairon, Sylvain, 1C
Bokhrman, E. D., 2Y
Bolodi, Didier, 1C
Bonifazi, G., 0P
Bougot-Robin, Kristelle, 1I, 1R
Brandstetter, Markus, 0K
Brenner, Carsten, 2M
Brunetti, Alessandro Michel, 0C
Buschini, Claudia, 0D
Buri, Samuel, 0D
Cao, Wenbin, 1I
Carrel, Frédéric, 1C
Caucheteur, Christophe, 12, 15, 17
Causseuillet, Matthieu, 1C
Cekas, Elingas, 2Q
Chalyan, Tatevik, 1S
Chapato, Ivan, 2J
Charbon, Edoardo, 0D
Chauvin, David, 1J
Chen, Dong, 1W
Chen, Zhe, 2P, 2S
Chen, Ziyan, 1D
Chernomyrdin, Nikita V., 0W
Chertov, Alexandr N., 2C
Chib, Sheng, 2B
Chivanov, Alexey N., 2H
Choubey, Bhaskar, 0C
Ciobanu, Savu-Sorin, 33
Coelho, L., 18
Colace, L., 08
Collin, Stéphane, 0L
Conti Nibali, Valeria, 2M
Costa, V., 0F
Craciun, Gabriela, 0O
Cubik, Jakub, 30
Curticapean, Dan, 2T
Davin, Tanguy, 1N
Davis, N. M., 0M
Davoll, Federico, 0T
Debilquy, Marc, 17
De Dominicis, L., 0R
De Iacovo, A., 08
Dellith, Jan, 1G
Denisov, Victor M., 2G
Descamps, Frédéric, 12
Devi, V. Rama, 2A
Di Florio, Giuseppe, 2M
Dinakar, D., 2A
Dmitrieva, A. D., 1L
Domingues, Fátima, 1F
Dong, Huazhuo, 2S
Dong, Lei, 0S
Dupuy, J., 15
Duval, Hervé, 1C
Ebendorff-Heidepriem, Heike, 1H
Edel, J. B., 1R
El Deeb, Walid S., 23
Elizarov, Valentin, 2U
Esen, Cemal, 2M
Fajkus, Marcel, 30
Falk, Florio H., 1S
Farnan, Martin, 0Z
Fernández, Gerard, 0G
Filatov, Yuri V., 1L, 2X, 2Y
Foglia, S., 0B
Francis, D., 0M
Fujikawa, Chiemi, 22
Fytas, George, 1E
Nedoma, Jan, 30
Nguyen, Chi Thanh, 1J
Nguyen, Linh V., 1H
Nikodem, Michal, 0Q
Nikonovich, Maxim V., 0W
Novak, Martin, 30
Nuvoli, M., 0R
Obayya, S. S. A., 23
Obrezkov, Andrey V., 2H
Olesen, A. S., 03, 2W
Omar, Ahmad Fairuz, 0Y
Ortega Clavero, Valentin, 2T
Olesen, A. S., 03, 2W
Omar, Ahmad Fairuz, 0Y
Ortega Clavero, Valentin, 2T
Ostasevicius, Vytautas, 2Q
Ostendorf, Andreas, 2M
Ottevaere, Heidi, 2F
Özcan, Meriç, 0T
P. V. N., Kishore, 1B, 21, 2A
Palevicius, Arvydas, 2Q
Paludi, M., 0R
Pasquardini, Laura, 1S
Patimisco, Pietro, 0S
Pavesi, Lorenzo, 1S
Pavlov, P. A., 2Y
Pedersen, H. C., 2W
Pederzolli, Cecilia, 1S
Perenzoni, Matteo, 0E
Petrochenko, Andrey, 34
Pham, Quang Duc, 07
Pisarev, Viktor N., 2H
Pissadakis, Stavros, 1E
Piva, V., 0B, 0F
Polyakov, Vadim, 2U
Pozzi, Paolo, 2N
Punjabi, Nirmal, 2Z
Putha, Kishore, 1B, 21, 2A
Qi, Zhuang, 1D
Raeymaekers, S., 0P
Reithmeier, Eduard, 0S
Repin, Vladislav A., 2C
Rodionov, Andrey Yu., 2H
Roy, Sourabh, 21
Razhin, Alex., 16
Ryzhova, Victoria A., 2G
Sahre, M., 13
Saiz, José M., 1O
Samir, E., 1P
Sampaolo, Angelo, 0S
Samson, Armien John, 0J
Sanchez, David, 0G
Santos, J. L., 18
Sanuy, Andreu, 0G
Sanz, Juan M., 1O
Sardari, Behzad, 0T
Scamarcio, Gaetano, 0S
Schreuder, Eric, 15
Schröder, Werner, 2T
Schukar, M., 11
Schukar, V., 13
Scopa, L., 08
Seeini, Azman, 0Y
Serio, Bruno, 1N
Serranli, S., 0P
Shaalan, A. A., 23
Shaikh, Nishath Ashfak, 21
Shalabney, Atef, 1T
Shalymov, Egaz V., 1L, 2X
Shehata, N., 1P
Shevnina, Elena I., 2R, 2V
Sidorov, Igor, 2U
Silva, V., 0B, 0F
Singer, Johannes M., 0Z
Smeesters, L., 0X
Soetebier, Jens, 2M
Soloviev, Oleg, 2N
Soujanya, P., 2A
Spagnolo, Vincenzo, 0S
Sporea, Adelina, 0O
Sporea, Dan, 0O, 33
Srinivasan, Balaji, 2E
Stachowiak, Dorota, 0Q
Stajancic, P., 11
Stancalie, Andrei, 33
Stepashkin, Ivan, 34
Stubager, J., 2W
Sun, Qizhen, 16
Sun, Weimin, 1D
Swaminathan, S., 1Z
Tailade, Frédéric, 1C
Tan, Kok Chooi, 0Y, 2B
Tardieu, Clément, 0L
Tatam, R. P., 0M
Thienpont, Hugo, 0X, 2F
Tittel, Frank K., 0S
Tiwari, Shivani, 2E
Trull, A. K., 1M
Trushkina, Anna V., 2G
Valkykhov, Vladimir P., 1X
van den Berg, Steven A., 06
van der Horst, J., 1M
van Eldik, Sjoerd, 06
Vasa, Nilesh J., 2E
Vasinek, Vladimir, 30
Vcelak, J., 2I
Vdovin, Gleb, 2N
Veletbl, L., 2I
Venediktov, Vladimir Yu., 1L, 2X
Verhaegen, Michel, 2N
Verlinden, O., 15
Videen, Gorden, 1O
Viegas, D., 1B
Vieira, M., 0B, 0F
Vieira, M. A., 0B, 0F
Vincent, Grégory, 0L
Voigt, Dirk, 0S
Wangchuk, Jigme, 2Z
Warren-Smith, Stephen C., 1G, 1H
Weber, Andreas, 2T
Weber, Andreas, 2T
Conference Committee

Symposium Chairs

Francis Berghmans, Vrije Universiteit Brussel (Belgium)
Jürgen Popp, Leibniz-Institut für Photonische Technologien e.V. (Germany)
Ronan Burgess, European Commission (Belgium)
Peter Hartmann, SCHOTT AG (Germany)

Honorary Symposium Chair

Hugo Thienpont, Vrije Universiteit Brussel (Belgium)

Conference Chairs

Francis Berghmans, Vrije Universiteit Brussel (Belgium)
Anna G. Mignani, Istituto di Fisica Applicata Nello Carrara (Italy)

Conference Programme Committee

Francesco Baldini, Istituto di Fisica Applicata Nello Carrara (Italy)
Hartmut Bartelt, Institut für Photonische Technologien e.V. (Germany)
Brian Culshaw, University of Strathclyde (United Kingdom)
Thomas Geernaert, Vrije Universiteit Brussel (Belgium)
Roger M. Groves, Technische Universiteit Delft (Netherlands)
Jane Hodgkinson, Cranfield University (United Kingdom)
Jiri Homola, Institute of Photonics and Electronics of the ASCR, v.v.i. (Czech Republic)
Leszek Roman Jaroszewicz, Military University of Technology (Poland)
Elfed Lewis, University of Limerick (Ireland)
Alexis Mendez, MCH Engineering LLC (United States)
Luc Thevenaz, Ecole Polytechnique Fédérale de Lausanne (Switzerland)
Moshe Tur, Tel Aviv University (Israel)
Waclaw Urbanczyk, Wroclaw University of Technology (Poland)
Jan Van Roosbroeck, FBGS International (Belgium)
David J. Webb, Aston University (United Kingdom)
Libo Yuan, Harbin Engineering University (China)

Session Chairs

Geometric and Dynamometric Sensors
Francis Berghmans, Vrije Universiteit Brussel (Belgium)
Mid-Infrared Spectroscopy
Anna G. Mignani, Istituto di Fisica Applicata Nello Carrara (Italy)

Detector and Imager Technology and Physics III
Thomas Geernaert, Vrije Universiteit Brussel (Belgium)

Spectroscopy and Applications I
Anna G. Mignani, Istituto di Fisica Applicata Nello Carrara (Italy)

Spectroscopy and Applications II
Anna G. Mignani, Istituto di Fisica Applicata Nello Carrara (Italy)

Optical Fibre-based Sensors I
Thomas Geernaert, Vrije Universiteit Brussel (Belgium)

Optical Fibre-based Sensors II
Thomas Geernaert, Vrije Universiteit Brussel (Belgium)

Optical Fibre-based Sensors III
Christophe Caucheteur, Université de Mons (Belgium)

Optical Fibre-based Sensors IV
Christophe Caucheteur, Université de Mons (Belgium)

Resonant Structure-based Sensors
Thomas Geernaert, Vrije Universiteit Brussel (Belgium)

Sensors for Material Characterisation
Francis Berghmans, Vrije Universiteit Brussel (Belgium)

Molecular Sensors and Biosensors
Francis Berghmans, Vrije Universiteit Brussel (Belgium)