Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XXII

Miguel Velez-Reyes
David W. Messinger
Editors

18–21 April 2016
Baltimore, Maryland, United States

Sponsored and Published by
SPIE

Volume 9840
The papers in this volume were part of the technical conference cited on the cover and title page. Papers were selected and subject to review by the editors and conference program committee. Some conference presentations may not be available for publication. Additional papers and presentation recordings may be available online in the SPIE Digital Library at SPIEDigitalLibrary.org.

The papers reflect the work and thoughts of the authors and are published herein as submitted. The publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Please use the following format to cite material from these proceedings:

ISSN: 0277-786X
ISSN: 1996-756X (electronic)
ISBN: 9781510600812

Published by
SPIE
P.O. Box 10, Bellingham, Washington 98227-0010 USA
Telephone +1 360 676 3290 (Pacific Time)· Fax +1 360 647 1445
SPIE.org

Copyright © 2016, Society of Photo-Optical Instrumentation Engineers.

Copying of material in this book for internal or personal use, or for the internal or personal use of specific clients, beyond the fair use provisions granted by the U.S. Copyright Law is authorized by SPIE subject to payment of copying fees. The Transactional Reporting Service base fee for this volume is $18.00 per article (or portion thereof), which should be paid directly to the Copyright Clearance Center (CCC), 222 Rosewood Drive, Danvers, MA 01923. Payment may also be made electronically through CCC Online at copyright.com. Other copying for republication, resale, advertising or promotion, or any form of systematic or multiple reproduction of any material in this book is prohibited except with permission in writing from the publisher. The CCC fee code is 0277-786X/16/$18.00.

Printed in the United States of America.

Publication of record for individual papers is online in the SPIE Digital Library.

SPIEDigitalLibrary.org

Paper Numbering: Proceedings of SPIE follow an e-First publication model, with papers published first online and then in print. Papers are published as they are submitted and meet publication criteria. A unique citation identifier (CID) number is assigned to each article at the time of the first publication. Utilization of CIDs allows articles to be fully citable as soon as they are published online, and connects the same identifier to all online, print, and electronic versions of the publication. SPIE uses a six-digit CID article numbering system in which:

- The first four digits correspond to the SPIE volume number.
- The last two digits indicate publication order within the volume using a Base 36 numbering system employing both numerals and letters. These two-number sets start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B ... 0Z, followed by 10-12, 20-22, etc.

The CID Number appears on each page of the manuscript. The complete citation is used on the first page, and an abbreviated version on subsequent pages.
Contents

ix Authors

xi Conference Committee

xiii Introduction

SESSION 1 CLASSIFICATION

<table>
<thead>
<tr>
<th>Paper Number</th>
<th>Title</th>
<th>Paper Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>9840 03</td>
<td>A study of neural network parameters for improvement in classification accuracy</td>
<td>9840-2</td>
</tr>
<tr>
<td>9840 04</td>
<td>Tensor subspace analysis for spatial-spectral classification of hyperspectral data</td>
<td>9840-3</td>
</tr>
<tr>
<td>9840 05</td>
<td>Classification performance of a block-compressive sensing algorithm for hyperspectral data processing</td>
<td>9840-4</td>
</tr>
</tbody>
</table>

SESSION 2 SENSOR CHARACTERIZATION

<table>
<thead>
<tr>
<th>Paper Number</th>
<th>Title</th>
<th>Paper Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>9840 09</td>
<td>New applications of spectral edge image fusion</td>
<td>9840-9</td>
</tr>
<tr>
<td>9840 0A</td>
<td>Metamaterial based narrow bandwidth angle-of-incidence independent transmission filters for hyperspectral imaging</td>
<td>9840-62</td>
</tr>
</tbody>
</table>

SESSION 3 APPLICATIONS

<table>
<thead>
<tr>
<th>Paper Number</th>
<th>Title</th>
<th>Paper Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>9840 0C</td>
<td>Developing a confidence metric for the Landsat land surface temperature product</td>
<td>9840-10</td>
</tr>
<tr>
<td>9840 0D</td>
<td>Detecting red blotch disease in grape leaves using hyperspectral imaging</td>
<td>9840-12</td>
</tr>
<tr>
<td>9840 0E</td>
<td>Spectral feature characterization methods for blood stain detection in crime scene backgrounds</td>
<td>9840-13</td>
</tr>
</tbody>
</table>

SESSION 4 INVITED SESSION: SOLID TARGET VARIABILITY I

<table>
<thead>
<tr>
<th>Paper Number</th>
<th>Title</th>
<th>Paper Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>9840 0H</td>
<td>Ideal system morphology and reflectivity measurements for radiative-transfer model development and validation (Invited Paper)</td>
<td>9840-16</td>
</tr>
<tr>
<td>9840 0I</td>
<td>Experimental effects on IR reflectance spectra: particle size and morphology (Invited Paper)</td>
<td>9840-17</td>
</tr>
<tr>
<td>9840 0J</td>
<td>A next generation field-portable goniometer system (Invited Paper)</td>
<td>9840-18</td>
</tr>
</tbody>
</table>
SESSION 5 INVITED SESSION: SOLID TARGET VARIABILITY II

9840 OL NEFDS contamination model parameter estimation of powder contaminated surfaces (Invited Paper) [9840-20]

9840 OM Radiative transfer modeling of surface chemical deposits (Invited Paper) [9840-21]

9840 ON Hierarchical multi-scale approach to validation and uncertainty quantification of hyperspectral image modeling (Invited Paper) [9840-22]

9840 OO Advancing the retrievals of surface emissivity by modeling the spatial distribution of temperature in the thermal hyperspectral scene (Invited Paper) [9840-23]

9840 OP Modeling and analysis of LWIR signature variability associated with 3D and BRDF effects (Invited Paper) [9840-24]

9840 OQ Solid target spectral variability in LWIR (Invited Paper) [9840-25]

9840 OR Spectral BRDF modeling of vehicle signature observations in the VNIR-SWIR (Invited Paper) [9840-26]

9840 OS Instance influence estimation for hyperspectral target signature characterization using extended functions of multiple instances (Invited Paper) [9840-27]

9840 OT Graph-based and statistical approaches for detecting spectrally variable target materials (Invited Paper) [9840-28]

9840 OU Identification of solid materials using HSI spectral oscillators (Invited Paper) [9840-29]

SESSION 6 TARGET DETECTION

9840 OV Anomaly detection in hyperspectral imagery: statistics- vs. graph-based algorithms [9840-30]

9840 OW Target detection in hyperspectral imaging using logistic regression [9840-31]

9840 OX Comparison of algorithms for blood stain detection applied to forensic hyperspectral imagery [9840-32]

9840 OY Biased normalized cuts for target detection in hyperspectral imagery [9840-33]

9840 OZ Methods and challenges for target detection and material identification for longwave infrared hyperspectral imagery [9840-34]
SESSION 7
INVITED SESSION: NOVEL MATHEMATICALLY INSPIRED METHODS OF PROCESSING HYPERSPECTRAL IMAGERY

<table>
<thead>
<tr>
<th>Paper Number</th>
<th>Title</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>9840 11</td>
<td>Agile multi-scale decompositions for automatic image registration (Invited Paper) [9840-36]</td>
<td></td>
</tr>
<tr>
<td>9840 12</td>
<td>Schroedinger Eigenmaps with knowledge propagation for target detection (Invited Paper) [9840-37]</td>
<td></td>
</tr>
<tr>
<td>9840 15</td>
<td>Building robust neighborhoods for manifold learning-based image classification and anomaly detection (Invited Paper) [9840-39]</td>
<td></td>
</tr>
<tr>
<td>9840 16</td>
<td>A parametric study of unsupervised anomaly detection performance in maritime imagery using manifold learning techniques (Invited Paper) [9840-40]</td>
<td></td>
</tr>
<tr>
<td>9840 17</td>
<td>Use of high dimensional model representation in dimensionality reduction: application to hyperspectral image classification (Invited Paper) [9840-41]</td>
<td></td>
</tr>
<tr>
<td>9840 1A</td>
<td>Analyzing hyperspectral images into multiple subspaces using Gaussian mixture models (Invited Paper) [9840-79]</td>
<td></td>
</tr>
<tr>
<td>9840 1B</td>
<td>A nonlinear modeling framework for the detection of underwater objects in hyperspectral imagery (Invited Paper) [9840-44]</td>
<td></td>
</tr>
</tbody>
</table>

SESSION 8
SPECTRAL SIGNATURE MODELING, MEASUREMENTS, AND APPLICATIONS

<table>
<thead>
<tr>
<th>Paper Number</th>
<th>Title</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>9840 1D</td>
<td>A hyperspectral vehicle BRDF sampling experiment [9840-46]</td>
<td></td>
</tr>
<tr>
<td>9840 1E</td>
<td>Calculation of vibrational and electronic excited-state absorption spectra of arsenic-water complexes using density functional theory [9840-47]</td>
<td></td>
</tr>
<tr>
<td>9840 1F</td>
<td>Modeling of forest canopy BRDF using DIRSIG [9840-48]</td>
<td></td>
</tr>
<tr>
<td>9840 1G</td>
<td>Imaging of gaseous oxygen through DFB laser illumination [9840-49]</td>
<td></td>
</tr>
<tr>
<td>9840 1H</td>
<td>Towards an improved understanding of the influence of subpixel vegetation structure on pixel-level spectra: a simulation approach [9840-50]</td>
<td></td>
</tr>
</tbody>
</table>

SESSION 9
DIMENSIONALITY REDUCTION

<table>
<thead>
<tr>
<th>Paper Number</th>
<th>Title</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>9840 1I</td>
<td>How many spectral bands are necessary to describe the directional reflectance of beach sands? [9840-51]</td>
<td></td>
</tr>
<tr>
<td>9840 1J</td>
<td>Simultaneously sparse and low-rank hyperspectral image recovery from coded aperture compressive measurements via convex optimization [9840-52]</td>
<td></td>
</tr>
<tr>
<td>9840 1K</td>
<td>Manifold alignment with Schroedinger Eigenmaps [9840-53]</td>
<td></td>
</tr>
<tr>
<td>SESSION 10</td>
<td>SPECTRAL CHARACTERIZATION, DETECTION, AND IDENTIFICATION</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>9840 1M</td>
<td>Chemical plume detection with an iterative background estimation technique [9840-55]</td>
<td></td>
</tr>
<tr>
<td>9840 1N</td>
<td>Flag-based detection of weak gas signatures in long-wave infrared hyperspectral image sequences [9840-56]</td>
<td></td>
</tr>
<tr>
<td>9840 1O</td>
<td>Temperature-emissivity separation for LWIR sensing using MCMC [9840-57]</td>
<td></td>
</tr>
<tr>
<td>9840 1P</td>
<td>Polarimetric assist to HSI atmospheric compensation and material identification [9840-58]</td>
<td></td>
</tr>
<tr>
<td>9840 1Q</td>
<td>A spectral climatology for atmospheric compensation of hyperspectral imagery [9840-59]</td>
<td></td>
</tr>
<tr>
<td>9840 1R</td>
<td>Generation of remotely sensed reference data using low altitude, high spatial resolution hyperspectral imagery [9840-60]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SESSION 11</th>
<th>SENSOR DESIGN AND DEVELOPMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>9840 1S</td>
<td>An imaging spectro-polarimeter for measuring hemispherical spectrally resolved downwelling sky polarization [9840-63]</td>
</tr>
<tr>
<td>9840 1T</td>
<td>Compact hyperspectral camera in the mid-infrared for small UAVs [9840-64]</td>
</tr>
<tr>
<td>9840 1U</td>
<td>Compact multispectral multi-camera imaging system for small UAVs [9840-65]</td>
</tr>
<tr>
<td>9840 1V</td>
<td>Software defined multi-spectral imaging for Arctic sensor networks [9840-66]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INTERACTIVE POSTER SESSION</th>
</tr>
</thead>
<tbody>
<tr>
<td>9840 1W</td>
</tr>
<tr>
<td>9840 1Z</td>
</tr>
<tr>
<td>9840 21</td>
</tr>
<tr>
<td>9840 22</td>
</tr>
<tr>
<td>9840 23</td>
</tr>
<tr>
<td>9840 24</td>
</tr>
<tr>
<td>9840 25</td>
</tr>
<tr>
<td>9840 26</td>
</tr>
</tbody>
</table>
Comparing performance of standard and iterative linear unmixing methods for hyperspectral signatures

Middle infrared (wavelength range: 8 μm-14 μm) 2-dimensional spectroscopy (total weight with electrical controller: 1.7 kg, total cost: less than 10,000 USD) so-called hyperspectral camera for unmanned air vehicles like drones

Tracking the on-orbit spatial performance of MODIS using ground targets

Monitoring of urban heat island over Shenzhen, China using remotely sensed measurements
Authors

Numbers in the index correspond to the last two digits of the six-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first four digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Ackleson, Steven G., 1I
Adler-Golden, Steven, 0P, 0R
Angoth, Vivek, 1V
Arguello, Henry, 1J, 23
Arias, Fernando X., 05
Aruaga, Emmanuel, 05
Ash, Joshua N., 1O
Aufran, Wesley, 0D
Bachmann, Charles M., 0J, 1D, 1I, 1K
Beiswenger, Taya N., 0I
Berksen, Emily E., 0V
Beveridge, J. Ross, 1N
Blake, Thomas A., 0I
Borel, Christoph, 0Q
Brauer, Carolyn S., 0I
Brinkmann, Jake, 29
Brown, Scott D., 1H, 24
Cahill, Nathan D., 0Y, 1K
Cain, L., 0R
Castillo, Sergio, 23
Chenault, David B., 1S
Claus, Ryan, 1V
Cocoa, L., 1G
Cone, Shell R., 25
Coudrain, Christophe, 1T
Craven, J., 0H
Crouse, David T., 0A
Dafta, Urmiila, 1U
DeCoster, Mallory E., 25, 27
Dill, Jeffrey C., 26
Doctor, Katarina Z., 11
Dong, Guihua, 2A
Dorado-Munoz, Leidy P., 0Y, 12
Dorrance, J. K., 0H
Doster, Timothy, 15, 16
Draper, Bruce, 1N
Du, Qian, 21
Dube, Roger R., 0E, 0X
Engel, David W., 0N
Ertel, Alyssa B., 0I
Espitia, Óscar, 23
Fan, Lei, 04
Faulring, Jason W., 0J
Fedel, M., 1G
Ferrec, Yann, 1T
Finlayson, Graham D., 09
Firpi, Alex H., 25
Fuerschbach, K. H., 0H
Fusina, Robert A., 1I
Gault, Travis R., 27
Gélvez, Tatiana C., 1J
Gibbs, Timothy J., 0L
Gibney, Mark, 1P
Gillis, David B., 1B
Golowich, Steven, 1M
Goodenough, Adam A., 1H, 24
Graff, David L., 0N
Gray, Deric J., 1I
Guérineau, Nicolas, 1T
Haavardsholm, Trym, 1U
Haelterman, R., 0O
Harms, Justin D., 0J
Hayes, Alex E., 09
He, Lihuan, 2A
Hong, Liang, 2A
Houser, Paul R., 11
Huang, L., 1E
Hyatt, Brian, 1S
Ientilucci, Emmett, 0R, 0W, 1D
Ishimaru, Ichiro, 28
Jacobs, Samantha K., 25
Jansen, Melissa E., 27
Jansing, E. David, 27
Jin, Xuemin, 0P
Johnson, Juan E., 1K
Johnson, Timothy J., 0I
Kaufman, Jason R., 0Z, 26
Kelbe, Dave, 1H
Kerekes, John P., 1R
Kim, Heekang, 1Z
Kim, Sungho, 1Z
Kirby, Michael, 1N
Kling, Emmanuel, 1T
Knayz, Vladimir A., 22
Krafick, K. L., 0H
Krishnamurthy, Ramnarayan, 1V
Kulp, Thomas J., 0H, 0M, 0N
LaCasse IV, C. F., 0H
Lambrakos, S. G., 1E
Lanker, Cory L., 0I, 0U
Laraby, Kelly G., 0C
Leija, Omar Navarro, 11
Le Moigne, Jacqueline, 11
Less, David, 0P
Li, Jiaojiao, 1W, 21
Li, Wei, 21
Li, Yongjun, 1W
Li, Yunsong, 1W, 21
Link, Daniel, 29
Liu, Weijia, 1W
Lo, Edisanter, 0W
Lodewyckx, P., 0O
Mani, Karthikeyan, 1V
Manolakis, Dimitris, 1M
Marrinan, Timothy, 1N
Massa, L., 1E
Matthew, Jobin J., 0E, 0X
Mehrubeoglu, Mehrube, 0D
Meola, Joseph, 0Z, 1O
Messinger, David W., 04, 0E, 0L, 0V, 0Y, 12
Mills, B. E., 0H
Mock, Kenrick, 1V
Montagna, Roberto, 09
Montes, Marcos J., 11
Muratov, L., 0R
Murphy, James M., 11
Myers, Tanya L., 0I
Ogawa, Satoru, 28
Olson, Colin C., 15, 16
Opsahl, Thomas, 1U
Orlebeck, Keith, 0D
Parente, Mario, 1D
Pathak, Avijit, 03
Perkins, T., 0R
Perry, David L., 0Z
Peterson, Chris, 1N
Pezzaniti, J. Larry, 1S
Pola Fossi, Armande, 1T
Poletto, L., 1G
Powell, John H., 1Q
Rankin, Blake M., 02
Raqueno, Oleg V., 22
Reichardt, Thomas A., 0H, 0M, 0N
Rengarajan, Rajagopalan, 1F
Resmini, Ronald G., 1Q
Richardsmeier, Steven, 1D
Roche, Michael, 1S
Rodriguez, Benjamin M., 25, 27
Romanyczek, Paul, 1H
Romano, Joao, 0Q
Rosario, Dalton, 0Q
Roux, Nicolas, 1T
Rueda, Hoover F., 1J
Ruiz Torres, Andres J., 0J
Rynes, Peter, 0P
Saito, Tsubasa, 28
Schott, John R., 0C, 1F
Shabbrea, A., 1E
Shimoni, M., 0O
Sierra, Heidy, 0S
Siewert, Sam, 1V
Singh, Surjith B., 1V
Skaugen, Alle, 1U
Skauil, Torbjørn, 1U
Smith, Milton O., 0I, 0U
Sommers, R. L., 0H
Song, Juan, 1W
Spence, Clay D., 1A
Srivistava, Saurav, 1V
Su, Yin-Fong, 0I
Sundberg, R., 0R
Svejkovsky, Joseph, 1D
Szecsody, James E., 0I
Taşkin, Gülşen, 17
Theiler, James, 0T
Thompson, Sandra E., 0N
Tiwari, K. C., 03
Tondello, G., 1G
Tonkyn, Russell G., 0I
Torkildsen, Hans Erling, 1U
Truslow, Eric, 1M
Tzeng, Nigel H., 25
van Aardt, Jan, 1H, 1R, 24
van Leeuwen, Martin, 1H
Vis, Matthew Demi, 1V
Vishnyakov, Boris V., 22
Völter, Yury V., 22
Vongsy, Karmon M., 26
Vygodov, Oleg V., 22
Wagner, Chris, 1V
Wang, Mingming, 1H, 24
Wang, Weimin, 2A
Wang, Zhipeng, 29
Williams, McKay D., 1R
Xiong, Xiaoxiong, 29
Yamamoto, Naoyuki, 28
Yang, Jie, 0E, 0X
Yang, Lijun, 2A
Yao, Wei, 1H, 24
Zare, Alina, 0S
Zemlan, Michael J., 0D
Zhang, Xuewen, 0Y
Zheltov, Sergey Y., 22
Ziemann, Amanda K., 0T
Zou, Sheng, 0S
Conference Committee

Symposium Chair

David A. Logan, BAE Systems (United States)

Symposium Co-chair

Donald A. Reago Jr., U.S. Army Night Vision & Electronic Sensors Directorate (United States)

Conference Chairs

Miguel Velez-Reyes, The University of Texas at El Paso (United States)
David W. Messinger, Rochester Institute of Technology (United States)

Conference Program Committee

Wojciech Czaja, University of Maryland, College Park (United States)
Eustace L. Dereniak, College of Optical Sciences, The University of Arizona (United States)
Michael T. Elsmann, Air Force Research Laboratory (United States)
Jacqueline J. Le Moigne, NASA Goddard Space Flight Center (United States)
Dalton S. Rosario, U.S. Army Research Laboratory (United States)
Alan P. Schaum, U.S. Naval Research Laboratory (United States)
James Theiler, Los Alamos National Laboratory (United States)
Grady Tuell, Georgia Tech Research Institute (United States)

Session Chairs

1 Classification
Miguel Velez-Reyes, The University of Texas at El Paso (United States)

2 Sensor Characterization
Emmanuel Arzuaga, Universidad de Puerto Rico Mayagüez (United States)

3 Applications
Dalton S. Rosario, U.S. Army Research Laboratory (United States)

4 Invited Session: Solid Target Variability I
James P. Theiler, Los Alamos National Laboratory (United States)
Amanda K. Ziemann, Los Alamos National Laboratory (United States)
5 Invited Session: Solid Target Variability II
James P. Theller, Los Alamos National Laboratory (United States)
Amanda K. Ziemann, Los Alamos National Laboratory (United States)

6 Target Detection
John P. Kerekes, Rochester Institute of Technology (United States)

7 Invited Session: Novel Mathematically Inspired Methods of Processing Hyperspectral Imagery
Wojciech Czaja, University of Maryland, College Park (United States)
Jacqueline J. Le Moigne, NASA Goddard Space Flight Center (United States)

8 Spectral Signature Modeling, Measurements, and Applications
Emmett J. Ientilucci, Rochester Institute of Technology (United States)

9 Dimensionality Reduction
Wojciech Czaja, University of Maryland, College Park (United States)

10 Spectral Characterization, Detection, and Identification
Grady H. Tuell, Georgia Tech Research Institute (United States)

11 Sensor Design and Development
David W. Messinger, Rochester Institute of Technology (United States)
Introduction

This year marks the twenty second edition of the SPIE conference, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery. This conference continues to be one of the most important forums for our community since 1994. The proceeding contains more than 60 papers presented at the conference.

This year the conference included 71 presentations organized into 11 oral sessions and one poster session over three and a half days. We also had two invited sessions. The first was, “Novel Mathematically Inspired Methods of Processing Hyperspectral Imagery” organized by Professor Wojciech Czaja, University of Maryland, College Park, and Dr. Jacqueline J. Le Moigne, NASA Goddard Space Flight Center with 10 presentations. This is the second year of this effort highlighting novel approaches to the analysis of hyperspectral imagery. The second invited session was, “Solid Target Variability I and II” organized by Dr. James P. Theiler and Dr. Amanda K. Ziemann, from Los Alamos National Laboratory, with 15 presentations highlighting work primarily supported by the National Nuclear Security Administration. Our deep thanks to the organizers and the invited presenters for this outstanding effort.

We are looking forward to the 23rd year of the conference in Anaheim, California in 2017.

Miguel Velez-Reyes, Ph.D.
David Messinger, Ph.D.